首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
印尼某海滨砂矿合理选矿工艺流程的研究   总被引:2,自引:0,他引:2  
对印度尼西亚某海滨砂矿进行了详细的工艺矿物学及选矿工艺流程研究。由于矿石经历风化淋滤, 各种矿物磁性范围重叠, 矿样属难选矿石。采用分级-重选-磁选-焙烧联合流程进行多次选别, 使铁、钛矿物得到了较好的分离, 在原矿含TiO2和Fe分别为6.38%和21.91%时, 获得了铁精矿含Fe 56.27%、Fe回收率为63.95%, 钛铁矿精矿含TiO2 46.91%、TiO2回收率为22.42%的技术指标。  相似文献   

2.
张华 《矿冶工程》2013,33(5):75-78
对莫桑比克某海滨砂矿进行了选矿试验研究。结果表明, 在原矿含TiO2 35.80%时, 采用湿式磁选-重选-干式磁选联合流程, 可获得钛铁矿精矿Ⅰ产率31.94%、含TiO2 46.23%、回收率为41.31%, 钛铁矿次精矿Ⅱ产率38.73%、含TiO2 44.57%、回收率为48.30%的试验指标。钛铁矿精矿TiO2综合回收率达到89.61%。该研究为此类钛铁矿的开发和利用提供了依据。  相似文献   

3.
应用高压辊磨机的红格钒钛磁铁矿选矿工艺研究   总被引:2,自引:0,他引:2  
采用原矿高压辊磨-粗粒湿式磁选抛尾-阶段磨矿、阶段弱磁选选铁,选铁尾矿阶段弱磁选-强磁选-浮选选钛工艺流程对攀西红格低品位钒钛磁铁矿进行选矿试验,获得了铁品位为57.41%、铁回收率为52.88%的铁精矿和TiO2品位为47.87%、TiO2回收率为39.31%的钛精矿。研究表明:通过采用高压辊磨技术,可使选铁过程和选钛过程磨选量分别减少34.18%和10.19%。  相似文献   

4.
某低品位钛铁砂矿选矿工艺研究   总被引:2,自引:0,他引:2  
云南某低品位钛铁砂矿TiO2和Fe品位分别为5.32%和11.07%,钛和铁主要以细粒嵌布的钛铁矿和钛磁铁矿形式存在。针对原矿品位低和金属嵌布粒度细的特点,采用粗磨-弱磁选-高梯度强磁选-磁选粗精矿分别再磨后精选工艺处理,可获得钛精矿TiO2品位46.30%、铁精矿品位54.17%、TiO2和Fe综合回收率分别为63.59%和30.89%的试验指标,为该类低品位钛铁砂矿的有效利用提供了参考。  相似文献   

5.
印尼某海滨砂铁矿选矿试验研究   总被引:1,自引:0,他引:1  
为了给国内某企业开发印尼某海滨砂铁矿资源提供技术依据,采用磨矿-弱磁选流程和预选抛尾-分级-磨矿-弱磁选流程对该矿矿样进行了选矿试验,前者获得了Fe品位为55.31%、TiO2含量为9.32%、Fe回收率为87.29%的铁精矿,后者获得了Fe品位为54.62%、TiO2含量为9.49%、Fe回收率为88.35%的铁精矿。两流程相比,铁精矿指标相近,但后者可减少占原矿37.73%的磨矿量和占原矿7.16%的末段磁选量,故将其作为推荐流程。  相似文献   

6.
论文以攀西地区白马辉长岩型超低品位钒钛磁铁矿为研究对象,查明了该矿石中化学组分、矿物组成、铁和TiO2的相态。在此基础上进行了多粒级多磁场梯度干式磁选抛尾试验,通过铁和TiO2的相态分析阐述了干式磁选抛尾的合理性;进行了干式磁选精矿阶段磨矿阶段选别试验,二段磁选在-200目占80%细度下获得了TFe 57.78%、TiO2 7.72%、V2O5 0.69%的铁精矿,铁精矿产率为12.93%、铁回收率51.56%,相对磁性铁回收率为98.70%,V2O5回收率78.26%。结果表明该矿石虽然铁品位低,仍具综合回收利用价值。   相似文献   

7.
甘肃某含钪低品位钛铁矿石Fe、TiO2、Sc2O3含量分别为10.20%、4.55%和55.6 g/t,磁性铁仅占总铁的17.90%,钛铁矿形式的铁占总铁的22.02%,硅酸盐形式的铁占总铁的52.05%;钛铁矿形式的钛占总钛的69.01%,钛磁铁矿中钛占总钛量的3.52%,其余的钛主要赋存在难以富集和回收的硅酸盐矿物中。磁铁矿嵌布粒度主要为0.5~0.04 mm,钛铁矿嵌布粒度主要为1~0.07 mm,二者嵌布关系密切,混杂充填在硅酸盐矿物粒间,钪主要以类质同象形式存在于深色钙镁酸盐类矿物(主要为角闪石)中。为了确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,6~0 mm矿石经重磁拉选矿机预选抛出29.82%的含泥粗粒尾矿后,在阶段磨选情况下(二段磨矿细度为-0.074 mm占81%),采用1粗(135.4 kA/m)2精(119.4 kA/m和119.4 kA/m)弱磁选流程选铁,选铁尾矿采用1粗(0.7 T)1精(0.6 T)高梯度强磁选流程预富集钛,强磁选钛精矿经1粗1扫4精、中矿顺序返回流程选钛,最终获得Fe品位为60.78%、Fe回收率为13.11%的铁精矿,TiO2品位为47.05%、TiO2回收率为55.74%的钛精矿和Sc2O3品位为99.0 g/t、Sc2O3回收率为48.68%钪精矿。  相似文献   

8.
甘肃某含钪低品位钛铁矿石Fe、TiO2、Sc2O3含量分别为10.20%、4.55%和55.6 g/t,磁性铁仅占总铁的17.90%,钛铁矿形式的铁占总铁的22.02%,硅酸盐形式的铁占总铁的52.05%;钛铁矿形式的钛占总钛的69.01%,钛磁铁矿中钛占总钛量的3.52%,其余的钛主要赋存在难以富集和回收的硅酸盐矿物中。磁铁矿嵌布粒度主要为0.5~0.04 mm,钛铁矿嵌布粒度主要为1~0.07 mm,二者嵌布关系密切,混杂充填在硅酸盐矿物粒间,钪主要以类质同象形式存在于深色钙镁酸盐类矿物(主要为角闪石)中。为了确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,6~0 mm矿石经重磁拉选矿机预选抛出29.82%的含泥粗粒尾矿后,在阶段磨选情况下(二段磨矿细度为-0.074 mm占81%),采用1粗(135.4 kA/m)2精(119.4 kA/m和119.4 kA/m)弱磁选流程选铁,选铁尾矿采用1粗(0.7 T)1精(0.6 T)高梯度强磁选流程预富集钛,强磁选钛精矿经1粗1扫4精、中矿顺序返回流程选钛,最终获得Fe品位为60.78%、Fe回收率为13.11%的铁精矿,TiO2品位为47.05%、TiO2回收率为55.74%的钛精矿和Sc2O3品位为99.0 g/t、Sc2O3回收率为48.68%钪精矿。  相似文献   

9.
新疆某选铁尾矿中TiO2品位6.30%, TFe品位10.45%, 针对该矿物采用重选-磁选-重选的联合工艺流程, 最终获得TiO2品位48.27%、回收率56.07%的合格钛精矿和TFe品位54.60%、回收率11.81%的铁精矿。  相似文献   

10.
对云南某低品位钛铁矿进行了选矿试验研究, 采用弱磁与强磁相结合的方案进行抛尾, 可抛掉TiO2品位为1.18%、产率为81.11%的尾矿, 获得TiO2品位为12.38%、TiO2回收率为64.50%的抛尾精矿; 抛尾精矿采用高梯度磁选预选获得TiO2品位为22.29%、对原矿回收率为57.16%的强磁选精矿; 以MOH为钛铁矿捕收剂, 采用一粗三扫三精浮选流程对高梯度磁选精矿进行浮选, 最终可获得TiO2品位为45.46%、TiO2总回收率为49.31%的钛铁矿精矿。  相似文献   

11.
陕西某钛铁矿选矿试验   总被引:1,自引:0,他引:1  
针对陕西某低品位原生钛铁矿石性质的特点,采用弱磁选优先选别钛磁铁矿、弱磁选尾矿高梯度磁选预抛尾、预选粗精浮选脱硫、浮选选钛铁矿流程进行了选钛试验研究。最终获得了铁品位为52.46%、TiO2品位为11.35%、铁回收率为27.63%、TiO2回收率为16.41%的攀西式钛磁铁精矿,以及TiO2品位为46.28%、TiO2回收率为45.30%的钛铁精矿。  相似文献   

12.
为了给某低品位钒钛磁铁矿石的开发利用提供技术依据,对该矿石进行了综合回收铁和钛的选矿试验。结果表明:原矿经两段阶段磨矿、阶段弱磁选,可获得铁品位为64.42%、铁回收率为55.42%的铁精矿;选铁尾矿经螺旋溜槽粗选-摇床1次精选,中矿开路情况下可获得TiO2品位为33.88%、对重选作业和对原矿的TiO2回收率分别为32.83%和27.78%的钛精矿,该产品可作为护炉原料销售  相似文献   

13.
攀钢集团矿业公司采用“强磁+浮选”工艺解决了钛回收技术难题,但是对于-38 μm粒级的钛铁矿回收率极低。为有效利用钛矿资源,进一步提高钛铁矿的回收率,探索了新型ZQS高梯度磁选机对超细粒级(-38 μm)钛铁矿的回收效果,并对磁选精矿进行浮钛条件试验和全流程试验。结果表明:当新型ZQS高梯度磁选机在给矿TiO2品位11.47%,-38 μm含量为88.89%时,经1次磁选得到的钛精矿TiO2品位可达到20.19%,TiO2回收率83.56%,其中-38 μm的粒级回收率达到84.05%;磁选精矿脱硫后再进行1粗4精钛浮选试验,最终得到TiO2品位46.80%,浮选作业回收率61.53%,对原矿回收率51.41%的钛精矿。新型ZQS高梯度磁选机回收细粒级钛铁矿非常有效,特别是对-38 μm超细粒级钛铁矿,磁选钛精矿TiO2品位和回收率均较高,为后续浮选提供了良好的给矿条件。  相似文献   

14.
张敏 《矿冶工程》2014,34(1):54-56
对印度尼西亚某海滨铁砂进行了选矿探索试验研究。试验结果表明, 该矿石主要金属矿物为钛磁铁矿、钛铁矿等, 原矿石不磨直接进行分选, 采用磁选-重选联合工艺, 可获得产率23.46%, TFe品位58.08%、含TiO2 12.48%、含V2O5 0.57%, TFe回收率69.70%的铁精矿, 有效回收了海滨铁砂中的铁、钛及钒。  相似文献   

15.
攀钢集团矿业公司采用“强磁+浮选”工艺解决了钛回收技术难题,但是对于-38 μm粒级的钛铁矿回收率极低。为有效利用钛矿资源,进一步提高钛铁矿的回收率,探索了新型ZQS高梯度磁选机对超细粒级(-38 μm)钛铁矿的回收效果,并对磁选精矿进行浮钛条件试验和全流程试验。结果表明:当新型ZQS高梯度磁选机在给矿TiO2品位11.47%,-38 μm含量为88.89%时,经1次磁选得到的钛精矿TiO2品位可达到20.19%,TiO2回收率83.56%,其中-38 μm的粒级回收率达到84.05%;磁选精矿脱硫后再进行1粗4精钛浮选试验,最终得到TiO2品位46.80%,浮选作业回收率61.53%,对原矿回收率51.41%的钛精矿。新型ZQS高梯度磁选机回收细粒级钛铁矿非常有效,特别是对-38 μm超细粒级钛铁矿,磁选钛精矿TiO2品位和回收率均较高,为后续浮选提供了良好的给矿条件。  相似文献   

16.
攀枝花某钛铁矿选矿厂尾矿库中尾矿TiO2和TFe品位分别为10.28%和10.38%,采用弱磁选铁-强磁预富集钛-浮选工艺回收其中的铁和钛。弱磁选铁可获得铁品位57.5%、回收率22.19%的铁精矿; 弱磁选铁尾矿经强磁预富集得到TiO2品位15.63%、回收率79.69%的强磁钛粗精矿; 强磁钛粗精矿经一次粗选一次扫选四次精选浮选闭路试验可获得TiO2品位45.97%、对强磁钛粗精矿回收率76.32%、对尾矿库尾矿回收率60.82%的钛精矿。该工艺实现了钛铁矿尾矿二次资源的综合利用。  相似文献   

17.
莫桑比克某海滨砂矿TiO2品位3.33%, 为开发利用该资源, 开展了重选-磁选工艺试验研究。原矿搅拌调浆后, 经过螺旋溜槽一次粗选和一次精选、重选精矿弱磁选、弱磁尾矿强磁选工艺处理, 可获得TiO2品位39.15%、TiO2回收率74.63%的钛精矿。研究成果为该资源的后续处理提供了数据支撑和技术支持。  相似文献   

18.
江苏某坡洪积型钛铁矿石TiO2品位2.63%,钛铁矿嵌布粒度细,矿石矿物组成复杂,黏土含量高。为开发利用该矿石资源,在工艺矿物学性质研究的基础上,首先进行了重选预选工艺和磁选预选工艺对比试验,磁选预选工艺抛除尾矿产率大且TiO2损失率较低。对磁选预选精矿在一段磨矿细度为-0.076 mm占60%、二段磨矿细度为-0.076 mm占90%条件下进行二阶段磨矿-阶段磁选试验,TiO2品位由6.78%提高至14.53%;二段强磁精矿采用螺旋溜槽重选,重选精矿以硫酸为pH调整剂、草酸为抑制剂、水玻璃为分散剂、MOH为捕收剂,经1粗4精1扫闭路浮选,能获得TiO2品位48.26%、回收率13.69%的钛精矿。因此,采用原矿强磁预选-预选精矿二阶段磨矿阶段磁选-磁选精矿螺旋溜槽重选-重选精矿浮选的联合选矿工艺,最终能获得TiO2品位高于48%的合格钛精矿。试验结果可以为坡洪积型钛铁矿石的开发利用提供参考依据。  相似文献   

19.
螺旋溜槽回收某细粒级钛铁矿的试验研究   总被引:1,自引:0,他引:1  
针对某矿样钛品位低(TiO2品位10.18%)、物料粒度细、重矿物含量高、脉石具有一定磁性的特点,采用一粗二扫螺旋溜槽重选流程预先富集钛,得到TiO2品位15.63%的重选精矿; 再经一粗三精浮选流程最终获得钛精矿TiO2品位46.35%、作业回收率69.95%、对原矿回收率48.27%。  相似文献   

20.
某低品位钛铁矿选矿工艺试验   总被引:1,自引:0,他引:1  
针对四川某钒钛磁铁矿选铁尾矿钛品位低、矿物组成复杂、常规选别工艺成本高、不具有开发价值等情况,对此钛铁矿进行了粗选和精选工艺试验研究。试验结果表明:采用圆锥选矿机重选-高梯度强磁选-磨矿-弱磁选-高梯度强磁选-脱硫浮选-钛浮选工艺流程,在原矿TiO2品位为5.76%的条件下,获得了TiO2品位为47.65%,TiO2回收率为41.29%的满意钛铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号