首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
远程下保护层开采煤岩卸压效应研究   总被引:2,自引:0,他引:2  
基于保护层开采覆岩移动破坏特征,分析了远程下保护层开采煤岩卸压的可行性,采用FLAC2D数值模拟软件对被保护煤层的应力分布特征、煤厚变形规律、水平位移规律、卸压范围及卸压角进行了研究。结果表明:下保护层开采时,断裂带高度已发育到被保护层,煤层产生膨胀变形,生成大量的次生裂隙,使被保护煤层产生不同程度的卸压,同时水平位移的产生也有利于煤层透气性增加。在走向方向上,被保护层向保护层采空区方向内错约30 m,煤层进入稳定膨胀变形区,走向有效卸压角的大小为66°左右。研究结果应用于工程实践后,淮南某矿13-1煤层瓦斯压力由原来的4.4 MPa变为卸压后的0.7 MPa,煤层透气性系数增大了1 061倍,表明该方法是较好的区域性防突措施。  相似文献   

2.
基于保护层开采条件下煤层变形破坏特征,采用RFPA2D-flow数值模拟软件,对被保护煤层的应力分布特征、煤层透气性变化规律和煤层变形量进行了数值模拟分析;同时对潘三矿近水平煤层进行下保护层开采试验研究,考察了保护层开采保护边界范围的卸压增透效果.结果表明,保护层开采后,过渡卸压区内煤体膨胀率为1.85%,煤层透气性系数可增大到原来的70倍.结合瓦斯抽采可以使保护层在走向方向和倾斜方向的有效保护卸压角从原来的锐角扩展到90°,使被保护煤层的卸压范围得到扩大.  相似文献   

3.
上保护层开采卸压范围的相似模拟试验   总被引:1,自引:1,他引:0  
为研究上保护层开采对被保护煤层的卸压范围,以淮北矿业集团海孜煤矿762保护层采面为研究对象,通过相似模拟试验,考察了保护层开采7#煤层顶底板岩层分带特征及被保护层9#煤应力、位移分布规律,并以此为依据,分析了保护层开采的保护范围。结果表明:762保护层采面充分开采条件下,通过实测结果计算得到倾向上、下有效卸压保护角分别为78°、79°,9#煤层最大膨胀率为0.81%。  相似文献   

4.
在分析上保护层开采卸压作用与防突机理基础上,利用弹性力学理论建立了上保护层开采下伏煤岩体应力变化力学模型,推导了底板任意一点应力分布计算方程,依据MohrCoulomb准则给出了底板煤岩体破坏判据。结合平煤十二矿己14-己15煤层联合开采工程案例,研究了开采上保护层底板裂隙发育深度与采高的关系,分析了不同上保护层采高条件下裂隙发育与突出煤层应力卸压规律。研究表明:随着底板深度的增加,下伏煤岩体卸压程度越来越低,卸压范围逐渐缩小,应力分布由浅部的"U"型逐渐过渡为深部的"V"型;当保护层己14-31010工作面设计采高为2.0 m时,下伏己15突出煤体裂隙发育,应力卸压率接近90%,保证卸压效果的同时可兼顾经济与社会效益。工程实例显示:己14上保护层开采后,下伏己15突出煤层瓦斯压力由1.78 MPa下降至0.35 MPa,降幅高达81%,与应力卸压理论计算结果相符。  相似文献   

5.
针对平顶山十矿己15-16煤层的赋存特征,运用相似材料模拟、数字散斑及数值模拟分析了近距离下保护层开采过程中,被保护层应力分布特征、卸压范围、变形规律等。结果表明:保护层开采后被保护层位于裂隙带的中下部,充分卸压;最大膨胀变形率可达1.91%,被保护层受保护范围为走向方向内错8~10 m,倾斜方向内错8~11 m。被保护层产生膨胀变形使其透气性增大,创造了煤与瓦斯共采的条件,确定了卸压瓦斯抽采方案。  相似文献   

6.
针对煤层下保护层开采保护范围划定及影响性问题,利用有限元分析软件ANSYS生死单元模拟保护层开采,探究随着保护煤层工作面的推进,被保护煤层垂直于煤层层理面的应力和变形规律;根据保护层开采应力卸压保护准则和煤层变形保护准则,确定被保护层沿倾向和走向的保护范围,同时对保护层保护效果的影响性因素进行分析。通过对某煤矿保护层开采保护范围的分析结果发现,被保护煤层倾向上部卸压角为60.32°,倾向下部卸压角为43.86°。走向卸压角在倾向各个位置呈现非均匀分布,最大卸压位置为走向中部附近,最大卸压角为54.46°。分析保护层保护效果的影响性因素可知,当煤层倾角较小时,采动应力判别准则较应变准则所得的卸压保护角偏于保守,较为安全。  相似文献   

7.
急倾斜多煤层上保护层保护范围的数值模拟   总被引:8,自引:1,他引:7       下载免费PDF全文
针对急倾斜煤层上保护层俯伪斜开采的保护范围划定问题,采用三维快速拉格朗日法,通过模拟上保护层俯伪斜开采后被保护层的应力场及变形场的动态发展过程,确定了随着上保护层工作面的推进,被保护层的垂直层理面应力和煤层变形规律;根据上保护层开采后的应力卸压保护准则和煤层变形保护准则,确定了上保护层沿走向和倾向的保护范围.研究表明,急倾斜煤层俯伪斜上保护层开采后,上保护层俯伪斜采煤法沿倾向上、下边界的卸压角分别为81.5和74°;沿走向的卸压角在倾向上呈非均匀分布,大小为30~52°,伪倾斜工作面中部的走向卸压角最大,为52°.数值模拟结果与现场考察结果比较接近.  相似文献   

8.
为了确定近距离煤层群上保护层开采保护范围,运用FLAC3D数值模拟对保护层开挖后的应力进行分析,得出了保护层的保护效果;结合应力卸压保护准则,确定保护层沿走向和倾向的卸压角。结果表明,近距离煤层群上保护层开采后,倾向上卸压角为67.7°,下卸压角为63.5°,走向卸压角为47.7°。通过现场考察,数值模拟分析计算得出的卸压角接近现场考察的卸压角。  相似文献   

9.
极薄保护层钻采上覆煤层透气性变化及分布规律   总被引:1,自引:0,他引:1       下载免费PDF全文
为了分析极薄保护层钻采的卸压保护效果,采用相似模拟和现场试验相结合的研究方法,系统地研究了被保护层卸压前后煤层透气性变化及分布规律。相似模拟试验研究表明,极薄保护层钻采后,被保护层产生卸压膨胀变形,煤层透气性增大,实测煤层透气性系数由3.80m2/(MPa2•d)增大到7.11m2/(MPa2•d)。待上覆煤岩体移动稳定后,由于煤岩体应力逐渐恢复,煤层透气性系数降至5.61m2/(MPa2•d),在保护层始采线前方和停采线后方的一定范围内上覆被保护层透气性比采空区中部大。随着被保护煤层逐渐被压实,煤层透气性有所降低,为了达到最佳的瓦斯抽采效果,必须在保护层钻采的同时进行卸压瓦斯抽采。现场实测极薄保护层钻采后被保护层透气性系数由0.047m2/MPa2•d增加到18.928m2/MPa2•d,提高了403倍。  相似文献   

10.
为了获得近距离多煤层下保护层开采的最大卸压范围,结合某煤矿中煤组的实际地质条件和工作面布置情况,采用FLAC3D数值模拟软件建立了下保护层开采的三维模型,模拟分析了下保护层1318116工作面开采后上覆煤岩层的应力场、位移场变化特征。根据保护层开采的应力卸压准则和变形准则,计算出走向和倾向上的最大卸压范围。以应力降低10%的界限来划分开采卸压范围,结果表明:1走向,从保护层开采边界外扩7.32 m,最大卸压角达到71.28°;2倾向,从保护层开采下边界外扩4.91 m,卸压角最大为79.80°,上边界外扩6.37 m,卸压角最大为85.18°。  相似文献   

11.
In order to understand the effect of mining height and floor lithology at the upper protective layer face on the pressure relief of protected coal seams, this paper uses a numerical simulation method to model the pressure changes at protected coal seam during mining upper protective layer. The results show that the taller the mining height at the upper protective layer face, the greater the protection on protected coal seam due to the higher level of pressure release; the upper protective layer face with hard rock floor impedes the pressure release at the protected coal seam, which affects the overall effect of the pressure release at protected coal seam using the protective layer mining method.  相似文献   

12.
涂冬平 《中州煤炭》2020,(10):17-20
为了解决目前平煤十三矿瓦斯抽采效果不佳的难题,结合煤矿的现场实际条件,提出了软岩保护层开采底抽巷穿层卸压抽采瓦斯技术,选择13100软岩保护层工作面作为首采面,然后在保护层工作面实施底抽巷穿层钻孔,并对底抽巷卸压区、未卸压区的单孔瓦斯浓度、瓦斯纯量进行测量。研究结果表明:通过连续2个月的观测,13100软岩保护层工作面底抽巷卸压区单孔平均瓦斯浓度在40%以上,较未卸压区至少提高了160%,同时单孔抽采纯量是未卸压区抽采纯量的32倍。  相似文献   

13.
董国胜 《中州煤炭》2019,(8):187-191,196
针对深部高突矿井存在高地应力、高瓦斯、低透气性、高地温、高岩溶水压以及高强扰动等致灾因素,以致瓦斯突出事故频繁发生的问题。在不具备常规保护层(煤层厚度≥0.8 m)开采的工程背景下,及实现上部被保护煤层增透卸压的难题,提出岩层下保护层工作面开采技术的解决思路。基于十二矿三采区主采煤层工程地条件,分析了岩层下保护层工作面采高与合理宽度的确定方法。结合矿井现有开采设备水平与技术经济因素,确定岩层下保护层开采厚度1.8 m,工作面宽度158 m;基于31040岩层下保护层工作面煤岩层揭露情况,优选出了岩层工作面破岩的关键开采设备,并设计了工作面三花眼辅助预裂爆破配合采煤机截割的破岩方式;根据己16-17煤层瓦斯地质条件,设计了岩层下保护层瓦斯卸压效果监测方法。  相似文献   

14.
济宁市金桥煤矿1304工作面为孤岛开采,工作面回采期间左、右、后、上方均为采空区,且上分层留有46 m遗留煤柱,1304工作面回采期间受采空区、遗留煤柱等因素影响较为明显。从1304工作面基本情况着手,通过FLAC3D数值模拟,重点研究上分层遗留煤柱塑性区分布及1304工作面超前支承压力影响范围,根据数值模拟结果,1304工作面受采空区侧向支承压力影响,煤柱所承受的支承压力峰值逐渐增大,应力集中程度逐渐较高。因此,1304工作面回采过程中压力显现将逐渐明显,结合应力在线系统监测数据,确定1304工作面超前支承压力影响范围在20~50 m,显著影响区域为超前30 m。  相似文献   

15.
以晋城矿区为工程背景,开采9号煤层作为3号煤层保护层,开展下保护层开采试验。采用数值模拟手段,研究下保护层开采上覆煤岩体卸压效果及被保护层煤体膨胀变形规律,并确定有效保护范围。研究结果表明:保护层工作面开采后,上覆煤岩体出现分区卸压效应,距离工作面垂直距离越远,岩层卸压程度越不明显。被保护层倾向卸压角为63°,走向卸压角为60°。采空区中部被保护层膨胀变形率保持在4‰左右,为稳定卸压区域。现场工业试验后,通过钻孔电视发现被保护层煤体受采动影响产生了离层裂隙。煤层瓦斯参数测定表明:被保护层煤体瓦斯含量、瓦斯压力均有所降低,保护层开采起到了效果。  相似文献   

16.
针对平煤股份十矿大埋深弱透气性煤层下保护层开采工程,采用岩石破裂损伤理论和有限元计算方法,研究了被保护层变形规律、应力演化过程、卸压保护范围及瓦斯抽采效果。结果表明,随着保护层工作面的推进,其上覆煤岩体同时发生拉伸应力和剪应力破坏,被保护层大量的裂隙扩展发育,孔隙率大幅提高;随着保护层的开采,被保护层呈现出压缩和膨胀的变化规律,位于保护层采空区中部上方的被保护层变形最大,变形膨胀率最大,因此有利于煤层的卸压增透和瓦斯的抽放;岩石保护层开采后对被保护煤层沿倾斜方向预计保护范围卸压角为78°。工业试验显示:在己15-16-24130岩石下保护层开采后,上覆己15-16煤层变形膨胀率在0.62%~1.54%,己17煤层变形膨胀率在1.71%~3.67%;在预计保护范围线位置测定的煤层最大综合残余瓦斯压力为0.42 MPa,最大残余瓦斯含量为4.210 7 m3/t。证明预计保护范围是可靠的,为平煤十矿下保护层开采区域瓦斯治理技术的推广应用提供了可靠的依据。  相似文献   

17.
蔡永博  王凯  袁亮  徐超  付强  孔德磊 《煤炭学报》2019,44(5):1527-1535
为研究保护层开采过程中下伏煤岩体卸荷损伤变形演化特征,运用FLAC~(3D)数值模拟方法及现场实验测量手段,以山西保德煤矿实际情况为研究背景,对保护层开采过程中下伏煤岩体应力、变形、塑性演化规律进行了研究及验证。研究表明:保护层开采过程中,被保护层应力呈增大—减小—增大的变化规律,下伏煤岩体应力在空间上呈现出明显的"O"形应力分布规律;受保护层采动影响,下伏煤层测点经过原岩应力、应力集中、采动卸压、应力恢复4个阶段;最大应力集中系数与最小卸荷比为固定值,且出现时间相同,工作面前方应力集中系数与工作面后方卸荷比均呈往复性变化,变化周期与工作面来压周期相关;本文实例中,最大应力集中系数约为1. 32,此时测点受到的z向应力值达到最大;最小卸压比约为4. 4%,此时测点受到的z向应力值达到最小,卸压效果最好;受应力变化影响,被保护层呈压缩—恢复—膨胀—回缩的基本变化规律,最终状态保持一定的膨胀变形,与应力分区相对应,根据不同变形特征可将下伏煤层分为原岩状态区、压缩变形区、卸压膨胀区、变形恢复区;本文实例中11号煤层最大膨胀变形量约为0. 6%,此时测点裂隙最为发育,增透效果最好,有利于瓦斯卸压抽采;受应力变化影响,下伏煤岩体塑形区域范围在空间上呈先xyz三向增大—x轴方向单向增大y轴z轴2个方向稳定的变化规律;随着工作面的回采,被保护层煤体塑性区范围在x轴方向不断增加;通过实测保德煤矿81307工作面回采过程中下伏11号煤地应力、膨胀变形量,对深部煤岩体卸荷损伤变形演化特征数值模拟结果进行了验证,下伏11号煤地应力、膨胀变形量变化规律与数值模拟规律较为吻合。  相似文献   

18.
针对沙曲矿近距离煤层群开采中的瓦斯防治问题,综合运用理论分析、数值模拟的方法对保护层开采时底板卸压效果进行分析,结合塑性区的发育形态编写fish语言获取被保护层中渗透系数的变化规律,并用于工程实践。结果表明:在2号煤层作为保护层开采的情况下,底板卸压深度可达20~36m,大于3+4号煤层与3号煤层之间的最大垂直距离,3+4号煤在上煤层的保护范围内|随着保护层的开采,被保护层渗透性系数明显提高,最大值可以达到5.2,虽然随着工作面推进覆岩垮落,渗透性系数会有所回落,但与初始值相比依然有较大提升|在2号煤层的回采时,对底板穿层钻孔进行了瓦斯浓度实测,钻孔中瓦斯浓度最大值可达到70%,抽采效果良好。  相似文献   

19.
为了研究上保护层不合理布置导致被保护层开采过程中巷道围岩严重变形破坏的问题,采用现场调研、理论分析、数值模拟和矿压观测等方法,对中兴矿3203工作面上保护层开采后的影响效应进行了研究,结果表明:当上保护层遗留煤柱宽度为10~70 m时,其对被保护煤层造成叠加应力大小为13.7~18.1 MPa;当上保护层工作面宽度为75~125 m时,其对应理论垂直有效距离为30~52 m;上保护层布置不合理导致被保护层工作面采掘空间围岩受应力叠加影响而稳定性较差,而合理布置上保护层能够有效改善被保护层采掘空间围岩应力环境,确保矿井安全高效生产。  相似文献   

20.
杨国枢  王建树 《煤炭学报》2018,43(Z2):353-358
近距离煤层下部煤层开采受上部遗留煤柱影响较大,易出现应力集中、矿压显现剧烈等情况,严重威胁矿井的正常生产。本文采用数值模拟、理论分析及现场实测等方法,对极近距离煤层群二次开采时顶板结构特征、活动规律及矿压显现规律进行了研究。结果表明:下部煤层开采导致直接顶向更高更远处发展,并涵盖了上部煤层采后的直接顶及基本顶范围,形成了典型“垮落带累加”的采场覆岩结构;上部煤层开采对下部煤层起到了一定的卸压保护作用,下部煤层工作面超前支承压力峰值及影响范围减小;但上部顶板垮落压实及遗留煤柱也造成了下部煤层局部区域动压显现,对工作面回采产生不利影响。研究成果为提高资源采出率、保证生产安全提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号