首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
通过对不同冷却方式的铜冶炼渣进行了可选性试验研究,结果表明,急冷渣由于冷却速度过快,还未形成相对集中的独立相结晶体就与铁及硅形成超细粒级的混合矿物,使铜矿物的可浮性下降,尽管磨得很细仍得不到有效的回收。缓冷渣则在缓慢的冷却过程中,炉渣熔体的初析微晶可通过溶解、沉淀形式成长,形成结晶良好的自形晶或半自形晶,析出的铜矿物粒子借助扩散和凝结作用就会增大,可浮性较好,且易于单体解离,有助于铜矿物的浮选回收。某小型铜冶炼一厂缓冷渣试验取得的指标为铜精矿品位55.10%,回收率97.27%;某大型铜冶炼厂缓冷渣试验取得的指标为铜精矿品位44.68%,回收率92.95%。试验结果表明,缓冷渣均取得较优的选别指标。  相似文献   

2.
由于金川镍原料成分的变化,造成高镍锍含铜升高,打破了磨浮系统的平衡状态,导致铜精矿和镍精矿金属互含较高。浮选产品的质量优劣取决于镍矿物和铜矿物晶体的大小和镶嵌关系,而晶体的大小和镶嵌关系又受保温缓冷条件的影响,因此,有必要探究保温缓冷条件对高镍锍浮选行为的影响规律。试验研究表明,在高镍锍物相结晶的温度区间内,适当延长缓冷时间,可改善辉铜矿和锍镍矿的浮选分离效果。在适宜的缓冷控温条件下,1次浮选可获得Cu品位53.9%、Cu回收率86.1%的铜精矿,Ni品位66.2%、Ni回收率81.5%的镍精矿,与原样品浮选相比,指标得到显著改善。机理研究表明,控温缓冷后的样品中辉铜矿晶粒尺寸和磨矿单体解离度增大是取得较好浮选效果的根本原因。  相似文献   

3.
针对铜渣中存在大量有价金属元素,堆存这些富含铁、铜的铜渣一方面占用大量土地、污染环境,另一方面还存在资源浪费的问题,为了回收铜冶炼渣中的有价金属元素铜、铁,进行了铜渣化学组成及结构分析,研究了碱度、冷却速度等因素对回收铜、铁精矿质量的影响。试验结果表明,采用浮选与磁选综合回收铜冶炼渣中的铜、铁,在铜渣碱度0.45、复合改性剂用量12%、熔渣温度1 350℃、缓冷终点温度900℃、冷却速度1.5℃/min、保温时间120 min的条件下所得的铜渣,采用2粗3精3扫工艺流程,可获得铜品位21.04%、铜回收率74.22%的铜精矿,选铜尾矿磁选选铁可获得铁品位56.50%、铁回收率61.80%的铁精矿。  相似文献   

4.
含铜炉渣晶相调控浮选新工艺研究   总被引:2,自引:0,他引:2  
根据某含铜炉渣的工艺矿物学性质,进行晶相调控及浮选试验研究。通过控制炉渣的缓慢冷却制度,以"包渣缓冷"的方式使含铜炉渣在1000~1250℃的温度范围内以小于3℃/min的速度缓慢冷却,可以控制炉渣粘度保持在0.25 Pa·s以下,从而保证炉渣中+20μm的铜颗粒含量大于85%。对经过晶相调控的含铜炉渣进行浮选试验,可以获得铜精矿品位29.84%、回收率94.18%的选别指标。将含铜炉渣晶相调控浮选新技术应用于大冶诺兰达炉渣选矿厂,可以明显提高选别指标。  相似文献   

5.
火法冶炼产生的铜冶炼炉渣中含有大量可利用的金属矿物,为分析铜炉渣冷却制度对渣中铜相颗粒结晶及浮选性能的影响,介绍了铜炉渣的不同冷却方式及缓冷设备配置方案,分析了不同类型抱罐车、渣包的优势及存在的缺陷,阐明了采用合理的缓冷工艺及设备能更好地促进渣中铜颗粒结晶,提高其浮选性能,并对铜炉渣冷却工艺及设备研究的未来趋势进行了展望。  相似文献   

6.
采用光学显微镜、扫描电子显微镜、矿物自动分析仪(AMICS)及化学物相分析等仪器和手段,对某铜冶炼厂不同缓冷时间条件下的电炉渣进行了系统的工艺矿物学研究。研究结果表明,随着冷却时间的延长,直接喷水冷淋的电炉渣中铜物相的粒度相比自然冷却的电炉渣,分布在0.020mm以下的占有率由52.48%降低至40.37%,电炉渣中的铜物相颗粒粒度有所增加,但增加幅度不大。可见,延长电炉渣的冷却时间,可促使冰铜颗粒的长大,有利于后续浮选回收,但缓冷时间只是影响冰铜颗粒生长的重要的因素之一。  相似文献   

7.
某铜渣硬度大、磨矿时间长, 导致浮选矿浆温度过高以及浮选药剂分解, 影响铜的回收, 为此, 对该铜渣进行了特性分析、捕收剂种类遴选及药剂制度优化研究。结果表明: 以ZJ101为捕收剂, 采用一粗三扫浮选流程, 在ZJ101用量40+20+10+5 g/t条件下, 可获得铜品位25.95%、铜回收率93.36%的指标, 实现了高温体系下铜的高效浮选回收。  相似文献   

8.
本文以缓冷电炉渣和转炉渣混合形成的典型铜渣为研究对象,通过研究混合铜渣中的矿物组成、元素赋存状态、嵌布特性等确定了铜渣分选的理论基础。并在铜渣物化性质分析的基础上研究了不同种类的调整剂、捕收剂和起泡剂对铜渣浮选的影响,确定了该混合铜渣浮选适宜的药剂制度为磨矿细度-48um 85%,硫化钠400g/t、石灰500g/t、丁基黄药+Z-200为 150g/t+40g/t、2#油140g/t的条件下,获得了Cu品位24.26%的精矿和0.207%的浮选尾矿,铜回收率达到92.78%,铜渣中的铜金属得到了有效回收利用。  相似文献   

9.
针对西北某铜冶炼缓冷渣中,铜主要以细微粒嵌布的冰铜微珠存在的特性,在铜缓冷渣化学组成研究基础上,重点考察缓冷时间、磨矿细度、捕收剂种类及用量等对铜缓冷渣浮选指标的影响,研发了新型微细粒铜缓冷渣浮选特效捕收剂酯-22。小型闭路浮选试验获得铜精矿含铜25.82%,铜回收率88.76%;140×10~4 t/a铜冶炼炉渣选矿系统的工业应用稳定期,连续45个班次获得铜精矿含铜24.02%,铜回收率86.91%,取得了较好的技术指标。  相似文献   

10.
采用某铜冶炼企业的选矿现场浮选工艺流程,对渣包中不同区域的铜渣分别进行浮选试验,研究渣包缓冷区域对铜浮选回收率的影响。结果表明:渣包内部的闪速炉渣浮选铜回收率为89.54%,尾矿品位为0.16%;中部炉渣的铜回收率为87.53%,尾矿品位为0.26%;外部炉渣的铜回收率为73.52%,尾矿品位为0.45%。在同一渣包中,铜渣浮选铜损失主要集中在渣包外部的铜渣,以现场的渣包体积进行计算,渣包外部铜渣的铜损失占总损失的70.22%。通过显微分析,造成渣包外部区域浮选指标较差的主要原因是渣包外部的炉渣含铜物质嵌布粒度较细,较细颗粒不能得到有效的单体解离,进而影响浮选指标。  相似文献   

11.
介绍了菲律宾某铜冶炼厂采用半自磨+浮选工艺处理铜冶炼缓冷混合渣的流程,以及水淬渣的工业试验情况。结果表明,水淬铜渣与缓冷混合渣之比不高于10%的情况下,可得到铜品位为25.63%、铜回收率为87.88%的铜精矿,该方案可有效回收水淬渣中的铜,避免铜的流失,为水淬渣的处理提供指导。  相似文献   

12.
铜火法冶炼渣中铜品位为5.23%,具有良好的回收利用价值。原矿中铜矿物主要为冰铜和金属铜,脉石矿物主要为铁酸盐和铁橄榄石,还有大量的玻璃相。玻璃相的存在为选矿带来不利的影响。对该冶炼渣采用阶段磨矿—异步浮选工艺,在较粗的磨矿细度下优先回收可浮性较好的粗颗粒铜矿物,获得含铜45.36%、铜回收率81.65%的铜精矿,浮选尾矿再磨后回收细粒级的铜矿物,获得含铜13.65%、铜回收率13.74%的综合铜精矿,综合铜精矿含铜33.99%,含金3.42 g/t,含银79.17 g/t,铜回收率95.40%,金回收率85.94%,银回收率81.17%,该冶炼渣中的铜、金和银均得到较好的回收。   相似文献   

13.
汪泰  叶小璐 《矿冶工程》2017,37(1):39-41
对国内某艾萨炉铜冶炼渣进行了回收铜和银的浮选试验研究。综合回收该铜渣中铜银的前提是:使铜与铁橄榄石、铅铁玻璃等脉石矿物充分解离; 清洁、活化被脉石矿物污染的铜矿物表面; 选择高效捕收剂回收密度大、粒度粗的金属铜。基于此, 确定磨矿细度-0.074 mm粒级占93%, 在球磨机中添加调整剂碳酸钠, 并以GD-3为捕收剂, 通过一粗三精二扫闭路浮选工艺, 获得了铜精矿铜品位29.55%、银品位146.30 g/t, 铜回收率90.99%、银回收率83.48%的技术指标, 为该铜渣的资源化利用奠定了基础。  相似文献   

14.
某铜冶炼炉渣含铜、铁、金、银等有益组分,综合回收价值较高。炉渣中铜矿物主要为辉铜矿、黄铜矿、斑铜矿和单质铜,其次为氧化亚铜;铁矿物主要为磁铁矿和硅酸铁;脉石矿物主要有硅酸铁和玻璃质。依据铜炉渣的矿物组成及矿物的嵌布特征,确定采用缓慢冷却—浮选工艺回收炉渣中的铜,采用一段粗选、三段扫选、一段精选的工艺流程,最终获得了铜品位18.81%、回收率92%的铜精矿,该工艺为铜炉渣的回收利用提供了有益的借鉴。  相似文献   

15.
铜冶炼渣中含有铜、铁等有价金属,其中铜金属可通过直接浮选回收,但铁的矿物组成复杂,很难直接通过磁选回收。以含铁38.76%、含铜2.26%的铜冶炼渣为研究对象,在矿石性质研究基础上,以烟煤为还原剂,通过直接还原焙烧—磁选工艺回收铜渣中的铜、铁。结果表明,铜冶炼渣、烟煤和还原助剂氧化钙以100∶25∶20的质量比混合,在焙烧温度1 200 ℃,焙烧时间80 min的条件下直接还原焙烧铜渣;焙砂在磨矿细度为-0.045 mm含量占80%,磁场强度为111 kA/m的条件下进行磁选试验,最终可获得铁品位为91.54%,铁回收率为90.54%,铜品位为6.06%、铜回收率为89.04%的含铜铁精矿,研究结果可为铜冶炼渣的回收利用提供依据。  相似文献   

16.
应用浮选和与黄铁矿焙烧工艺从铜渣中回收有价金属   总被引:2,自引:0,他引:2  
研究了从土耳其Kure地区堆存的老铜渣中回收铜和钴的工艺.所研究的铁橄榄石类型的堆存老铜渣含有1.24%Cu、0.53%Co和51.63?.研究了两个不同回收有价金属的方法.第一个方法是铜渣与黄铁矿一起焙烧,然后浸出.第二个方法是铜渣先浮选回收铜,浮选尾矿与黄铁矿一起焙烧,焙砂浸出.试验结果表明,第二个方法适于处理这种类型的铜渣.在浮选阶段获得的铜精矿铜品位为11%,铜回收率为77%.浮选尾矿的钴回收率为93%.在焙烧试验中研究了焙烧时间、焙烧温度和黄铁矿与铜渣重量比对铜和钴溶解率的影响,并确定了最佳的焙烧条件.在500℃温度下和黄铁矿与铜渣重量比为3:1时焙烧1h后,钴的溶解率为87%,铜的溶解率为31%.根据本试验结果,推荐了处理这种铜渣的工艺流程.  相似文献   

17.
研究了从土耳其Kure地区堆存的老铜渣中回收铜和钻的工艺.所研究的铁橄榄石类型的堆存老铜渣含有1.24%Cu、0.53%Co和51.63%Fe.研究了两个不同回收有价金属的方法.第一个方法是铜渣与黄铁矿一起焙烧,然后浸出.第二个方法是铜渣先浮选回收铜.浮选尾矿与黄铁矿一起焙烧,焙砂浸出.试验结果表明,第二个方法适于处理这种类型的铜渣.在浮选阶段获得的铜精矿铜品位为11%,铜回收率为77%.浮选尾矿的钴回收率为93%.在焙烧试验中研究了焙烧时间、焙烧温度和黄铁矿与铜渣重量比对铜和钴溶解率的影响,并确定了最佳的焙烧条件.在500℃温度下和黄铁矿与铜渣重量比为3:1时焙烧1h后,钴的溶解率为87%,铜的溶解率为31%.根据本试验结果,推荐了处理这种铜渣的工艺流程.  相似文献   

18.
某含铜污泥冶炼渣(以下简称铜渣)含铜3.50%,铜主要以金属铜和铜镍锡合金的形式存在,含铜物质嵌布粒度粗细不均匀,其中-0.01mm难选粒级占55%左右。对该铜渣开展浮选工艺研究,考察了磨矿细度、粗选pH和丁基黄药用量等条件对浮选指标的影响,并进行了全粒级浮选和筛分—浮选流程的开路对比试验。结果表明,在磨矿细度为-0.075 mm占85.76%的条件下,以丁基黄药为捕收剂,松醇油为起泡剂,全粒级开路浮选最终可获得铜品位为20.56%、铜回收率为65.98%的铜精矿;而筛分—浮选最终可获得铜品位15.65%、铜回收率56.52%的浮选铜精矿和铜品位22.56%、铜回收率18.63%的+0.15 mm产品,铜的综合回收率达75.15%,尾矿铜品位降低至0.49%。全粒级闭路浮选中矿易累积,而筛分—浮选闭路试验流程稳定,最终+0.15 mm产品和浮选精矿的综合铜回收率为85.15%、铜品位为11.90%,满足回炉冶炼要求。  相似文献   

19.
某难选铜镍矿石含铜0.27%、含镍0.72%,为实现矿石中铜镍矿物的综合回收与高效分离,本文采用“铜-镍优先浮选”工艺流程,以自主研发的高效铜矿物捕收剂LP-01作选铜捕收剂,石灰作抑制剂,在矿浆pH为8.5的低碱介质中优先浮选铜矿物;浮选尾矿以硫酸铜作活化剂、丁基黄药作捕收剂浮选镍矿物,获得了含铜25.35%、含镍0.79%,铜回收率80.73%的铜精矿,含镍8.15%、含铜0.23%,镍回收率75.41%的镍精矿。试验指标良好,铜、镍矿物都得到了较好的浮选回收与分离。  相似文献   

20.
含铜炉渣中有价金属含量较高,对其回收利用可以缓解资源供需矛盾,减少对环境的污染,提高资源的综合利用率。传统处理含铜炉渣的方法成本高、铜回收率低,污染严重。采用先浮选预富集后冶金处理的回收方法,可以降低成本,减少污染。针对某炼铜炉渣有价金属矿物种类多、质地坚硬、易碎难磨、嵌布粒度细的矿物特征,进行铜渣浮选回收铜试验研究。首先进行磨矿细度、浮选浓度、捕收剂种类等条件试验,确定磨矿细度为-37μm 75%,浮选浓度为42%,混基黄药为捕收剂。在此基础上进行开路浮选试验并确定采用一次粗选、二次扫选、二次精选的闭路流程,获得铜精矿品位为15.74%,铜回收率为74.65%的浮选指标,实现了炼铜炉渣的清洁、有效回收可以为进一步的扩大试验提供参考依据。该技术的研究可以给类似含铜难处理物料的高效提取提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号