首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
以活性炭、Ag+及Fe2+组合为催化剂,研究了催化条件下永平铜矿低品位原生硫化铜矿细菌槽浸的效果。研究结果表明,催化条件下低品位原生硫化铜矿细菌槽浸的效果良好,但充气量对浸出有较大的影响,其中25 mL/s的充气量最有利于铜的浸出,在浸出455 h后,铜的浸出率可达47.1%。酸化液可以代替9K+S培养液作为溶浸剂,用酸化液作溶浸剂时,在浸出335 h后,铜的浸出率可达41.8%,比9K+S培养液作溶浸剂高出1.7个百分点以上。  相似文献   

2.
为了进一步提高永平铜矿低品位原生硫化铜矿细菌浸出的效果,通过试验,研究了活性炭与银离子组合催化低品位原生硫化铜矿细菌浸出的效应。研究表明,在细菌浸出的初始阶段,添加活性炭与银离子组合可以进一步提高铜的浸出速度及浸出率,其浸出效果比单独添加活性炭或银离子要好,其中3.0g/L活性炭与2.0 mg/L银离子组合最有利于铜的浸出,在浸出310 h时,铜的浸出率可达到80%,而单独添加3.0g/L活性炭或2.5 mg/L银离子,在浸出310 h时,铜的浸出率分别为62%和20%;控制600~650 mV的低氧化还原电位条件更有利于细菌浸出低品位原生硫化铜矿中的铜。  相似文献   

3.
催化剂组合对低品位原生硫化铜矿细菌浸出的催化效应   总被引:1,自引:0,他引:1  
通过摇瓶实验,研究了活性炭、Ag+及Fe2+组合对低品位原生硫化铜矿细菌浸出的催化效应。研究表明:在细菌浸出的初始阶段,添加活性炭、Ag+及Fe2+组合可以进一步提高铜的浸出速度及浸出率,其浸出效果比单独添加活性炭或Ag+要好,其中浸出效果最好的是3.0 g/L活性炭+2.0mg/L Ag++8.0 g/L Fe2+组合,在浸出168 h后,铜的浸出率可达到83%,其次是3.0 g/L活性炭+2.0 mg/L Ag+组合,浸出310 h后,铜的浸出率可达到80%。而单独添加3.0g/L活性炭或2.5 mg/L Ag+,在浸出310 h时,铜的浸出率分别为62%和20%。控制550~640 mV的低氧化还原电位条件有利于细菌浸出低品位原生硫化铜矿中的铜。  相似文献   

4.
以煤和活性炭组合为催化剂,通过柱浸试验,研究了喷淋强度对永平低品位原生硫化铜矿酸法浸出的影响。研究结果表明,催化条件下喷淋强度对低品位原生硫化铜矿酸法柱浸有很大的影响,其中39.5L/m2.h的喷淋强度最有利于铜的浸出,在浸出41d后,铜的浸出率可达35.48%。在催化条件下低品位原生硫化铜矿酸法柱浸过程中,控制浸出液的Eh值小于650mv更有利于铜的浸出。  相似文献   

5.
以煤和活性炭组合为催化剂,通过柱浸试验,研究了喷淋强度对永平低品位原生硫化铜矿酸法浸出的影响。研究结果表明,催化条件下喷淋强度对低品位原生硫化铜矿酸法柱浸有很大的影响,其中39.5L/m2.h的喷淋强度最有利于铜的浸出,在浸出41d后,铜的浸出率可达35.48%。在催化条件下低品位原生硫化铜矿酸法柱浸过程中,控制浸出液的Eh值小于650mv更有利于铜的浸出。  相似文献   

6.
永平低品位原生硫化铜矿石细菌浸出条件研究   总被引:5,自引:5,他引:5  
张卫民  谷士飞  于荣 《金属矿山》2006,(2):41-44,66
为回收利用永平铜矿废矿石中的低品位原生硫化铜矿资源,通过摇瓶实验,研究了接种量、初始Fe^2+浓度、矿浆酸度、矿石粒度和矿浆浓度等条件对永平低品位原生硫化铜矿石细菌浸出的影响。研究结果表明:有利于铜浸出的条件是接种量20%,初始Fe^2+浓度0g/L,初始pH值1.2,浸出过程控制pH值小于1.50,矿石粒度5mm,矿浆浓度20%~25%;溶液中三价铁含量过高或产生铁的沉淀都会直接影响细菌的浸矿效果;尽管浸矿细菌能很好地适应浸矿环境,但铜的浸出速度偏慢、浸出率偏低,有待于采取强化浸出措施。  相似文献   

7.
杂卤石矿石可浸性试验研究   总被引:1,自引:0,他引:1  
以渠县杂卤石矿为原料, 选取CaCl2 溶液作为溶浸剂, 对矿石进行了室内搅拌浸出试验和柱浸试验。研究了矿石粒度、体系温度、溶浸剂浓度、液固比、搅拌等条件对溶浸过程的影响。为了评价矿石的可浸性, 采用柱浸试验探讨了矿石粒度、溶浸剂浓度、渗滤速度、渗滤路径等条件对过程的影响。试验结果表明, 在一定条件下杂卤石矿的浸出性能较好, K+ 浸出率最大可达93.88%。当K+浸出率达80%时, 消耗溶浸剂的量与矿石量的比值约为10∶1;且浸出液中K+最高浓度可达13.5 g/L, 这说明矿石在常温盐浸条件下易被浸出。利用溶浸技术对杂卤石矿开采具有一定的应用前景。  相似文献   

8.
银离子对低品位原生硫化铜矿石细菌浸出的催化   总被引:1,自引:5,他引:1  
为了提高用氧化亚铁硫杆菌和氧化硫硫杆菌混合菌对永平铜矿低品位原生硫化铜矿石的细菌浸出效果,研究了银离子、氯化银和硫化银的催化作用。结果表明,在细菌浸出的初始阶段,含银催化剂可以大大加快铜的浸出速度和提高铜的浸出率,添加含银30mg/L的含银催化剂,在450h内,铜的浸出率从10%提高到45%~51%;添加银离子比添加氯化银和硫化银更有利于提高铜的浸出率,银离子初始浓度以10mg/L为宜,此时铜的浸出率在600h内从不添加银离子时的20%提高到65%;添加含银催化剂使矿石中铁的浸出和溶液中二价铁的细菌氧化明显受到抑制;当有银离子时,低品位原生硫化铜矿石在低氧化电位下比高氧化电位更有利于铜的浸出。  相似文献   

9.
为了提高用氧化亚铁硫杆菌和氧化硫硫杆菌混合菌对低品位原生硫化铜矿石细菌浸出的效果,通过试验,研究了活性碳的催化效应。结果表明,在细菌浸出的初始阶段,添加活性碳可以大大加快铜的浸出速度和提高铜的浸出率。其中添加初始活性碳浓度为3.0g/L时,最有利于铜的浸出,在600h内铜的浸出率可以从11%增加到79%,比不添加活性碳时提高了68个百分点。添加初始活性碳加快细菌浸铜速度和提高铜浸出率的原因是由于活性碳与黄铜矿之间形成了电池反应。添加初始活性碳使矿石中铁的浸出和溶液中二价铁的细菌氧化明显受到抑制。当有活性碳存在时,低品位原生硫化铜矿石在低氧化还原电位下比高氧化还原电位更有利于铜的浸出。  相似文献   

10.
中高温浸矿菌结合对高砷铜精矿的浸出研究   总被引:8,自引:3,他引:5  
利用自主选育的耐高砷中高温浸矿菌浸出以砷黝铜矿为主的高砷铜精矿(As 4%~5%, Cu>20%)。采用前期中温浸矿菌, 后期高温浸矿菌的两段法生物浸出10 d, 总铜浸出率可达90.01%。对浸渣的铜物相分析可知: 高温菌对黄铜矿的浸出率可达78.45%, 是中温浸矿菌14.2%的5.5倍以上; 对砷黝铜矿的浸出率为33.42%, 约为中温浸矿菌17.48%的2倍。对原生硫化铜矿的浸出率总计为50.24%, 约为中温浸矿菌16.26%的3倍。高温菌对砷黝铜矿的氧化作用较黄铜矿差; 中温浸矿菌对As3+ 和As5+的耐受力比高温菌强。在两段法浸出前期添加2.0 g/L的 Fe3+ 或2.5%的黄铁矿精矿细菌培养液均能提高中温浸矿菌的浸出速率。  相似文献   

11.
以新疆滴水低品位氧化铜矿为研究对象, 在(NH4)2SO4-NH3浸出体系中分别考察了磨矿细度、浸出时间、总氨浓度、氧化剂用量、NH4+∶NH3比率等因素对铜浸出率的影响。最终确定最佳工艺条件为 磨矿细度-0.074 mm粒级占86%, 反应温度25 ℃, 搅拌转速200 r/min, 一段浸出液固比2∶1, 过硫酸铵0.15 mol/L, 氨水浓度3 mol/L, 硫酸铵浓度1.5 mol/L, 搅拌浸出1.5 h, 静置0.5 h;二段过硫酸铵、氨水和硫酸铵添加用量减半, 继续搅拌浸出1.5 h, 静置0.5 h;三段浸出药剂用量与二段浸出相同, 搅拌浸出2 h, 静置4 h完毕。该条件下, 可获得铜浸出率大于86%的优良指标。  相似文献   

12.
在微生物浸出钴矿石过程中添加银离子,考察了银离子对浸矿细菌生长、钴矿石生物浸出行为的影响。结果表明,银离子添加量对浸矿细菌的生长有直接影响,当添加量低于20 mg/L时,银离子对浸矿细菌的生长影响不大,但继续提高银离子浓度将对浸矿细菌的生长产生抑制作用;添加银离子能够加速含钴矿物的氧化溶解速率,显著提高金属浸出率,在矿浆浓度10%、浸出温度38 ℃、转速160 r/min、银离子浓度15 mg/L条件下,银离子的催化效果最佳,此时金属钴浸出率可提高28.0%,金属铜浸出率可提高26.8%。  相似文献   

13.
对铅冶炼难处理复杂氧化锌烟尘碱洗渣进行了"中性浸出—酸浸"工艺试验研究。结果表明,碱洗渣中性浸出时,锌、镉的浸出率先随浸出温度、液固比、搅拌速度和时间的增加而提高,后增速变缓;中浸渣酸浸时,液固比对锌、铟的浸出率无明显影响。锌、铟的浸出率随初始酸度、浸出温度和时间的增加先增加后变缓。中性浸出最佳条件为:温度338K、液固比5∶1、搅拌速度400r/min、浸出时间1h,此条件下,锌、镉的浸出率分别为80.3%和76.3%。中浸渣酸浸最佳条件为:初始酸度100g/L、浸出时间2h、浸出温度363K、液固比5∶1,在该条件下,锌、铟的浸出率分别为97.1%和85.5%。  相似文献   

14.
为对比陶瓷介质和铸铁介质搅拌磨矿对氰化尾渣中金浸出效果的影响,以中国黄金集团三和金业有限公司的金矿氰化尾渣为研究对象,开展了浸出提金试验。研究结果表明,在磨矿细度-6 μm 占 90%、JC 浸出剂用量 40 kg / t 及浸出时间 12 h 的条件下,采用陶瓷介质磨矿可获得浸出渣 Au 1. 29 g / t、浸出率 54. 45%的技术指标,采用铸铁介质磨矿可获得浸出渣 Au 2. 15 g / t、浸出率 39. 45%的技术指标。与传统铸铁介质磨矿相比,陶瓷介质磨矿条件下金的浸出率显著提高。 在陶瓷介质磨矿过程中加入 Fe3+后,金的浸出效果明显下降,表明 Fe3+的加入不利于金的浸出。 机理分析表明,铸铁介质磨矿过程中会产生Fe3+,Fe3+会在矿物表面形成羟基氧化铁( FeOOH),阻碍了 CN-的扩散过程,恶化浸出环境,从而降低了金的浸出率。  相似文献   

15.
采用混合非氰药剂对某微细浸染型金矿进行了实验室浸出试验研究。优化后的工艺条件为: Q-1用量50 kg/t, Q-3用量105 kg/t, 充气量1.8 m3/h, 液固比2, 常温搅拌24 h; 搅拌后矿浆直接采用非氰药剂SZS浸出, 浸出条件为: SZS用量4.4%, Cu2+浓度0.06 mol/L, NH3·H2O浓度1 mol/L, Na2SO3浓度0.15 mol/L, 液固比3, pH值10~11, 常温搅拌4 h, 在此条件下可获得金浸出率85.35%的指标。  相似文献   

16.
为了研究黄铜矿半导体电学特性对其生物浸出的影响机制, 采用霍尔效应测试技术分析了3种不同来源黄铜矿的半导体电学特性, 并在45 ℃、170 r/min、2%矿浆浓度条件下进行了中等嗜热混合菌浸出试验。结果表明, 黄铜矿A的载流子浓度为-9.190×1018 cm-3, 绝对值明显高于黄铜矿B和C的载流子浓度(-3.065×1018 cm-3和-2.183×1017 cm-3); 黄铜矿A的电阻率为0.054 65 Ω·cm, 明显低于黄铜矿B和C的电阻率(0.146 9 Ω·cm和0.930 6 Ω·cm); 黄铜矿的载流子浓度、电阻率与其铜浸出率存在明显联系, 黄铜矿的载流子浓度越高、电阻率越小, 铜的浸出速率就越高, 浸出19 d后, 3种黄铜矿纯矿物(A、B、C)的铜浸出率分别为66.1%, 25.3%和21.4%; 电化学试验结果表明, 3种黄铜矿的氧化还原反应过程基本相同, 但黄铜矿A的腐蚀电流密度明显高于另外两者。  相似文献   

17.
为提高磷酸铁锂中Fe、Li和P浸出率,同时实现高效去除Cu、Al和F,开发了硫酸熟化-水浸、铁粉置换除铜、化学沉淀-萃取二段除铝工艺。结果表明,在熟化时间2.5 h、熟化温度110 ℃、固液比4.0/1、水浸温度60 ℃及水浸时间2 h的最佳条件下,硫酸熟化-水浸工艺可将浓硫酸的使用量降至理论值的0.75倍,此时铁浸出率达95%以上,氟脱除率达74.4%; 铁粉置换除铜过程中,控制初始pH=1.2,铁粉加入量为理论值的1.2倍时,浸出液中残留的Cu2+浓度可降至4.9 mg/L以下; 采用化学沉淀-P204萃取二段除铝工艺,可将浸出液中Al3+浓度降至10 mg/L以下。  相似文献   

18.
采用XRF, XRD, XPS, SEM-EDS, Mossbauer等手段对炼铜反射炉水淬渣进行了工艺矿物学研究, 结果表明, 渣中含铜106%, 主要以冰铜存在;TFe含量为36.41%, 其中Fe2SiO4 53.5%, Fe3O4 32.5%, Fe2O3 14.0%。Fe的存在形态决定了在酸浸中铁会大量消耗酸, 其浸出率可达82.6%, 影响了铜的浸出, 而加入H2O2可有效地抑制铁的浸出, 铜的浸出率相应提高。在60 ℃、浸出30 min、搅拌速度500 r/min、酸浓度60 g/L、双氧水100 L/t时, 铜的浸出率可达66.9%;双氧水的加入对电位有影响, 对铜和铁的浸出分别起到促进和抑制作用, 高电位更有利于铜的浸出。  相似文献   

19.
利用钒钛磁铁矿制备钛白粉过程中产生的钛白废酸直接浸出含钒钢渣,最优浸出条件为: 浸出时间40 min、浸出温度353 K、酸度300 g/L、液固比9∶1,此时含钒钢渣中钒、铁、磷、镁浸出率分别为91.80%、84.70%、96.87%和94.66%。钒在浸出液中以VO2+和VO2+存在,可经螯合萃取实现钒的高效提取,萃余液中的其他金属可进一步回收利用。浸出渣主要成分为二水硫酸钙,可制备工业副产品石膏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号