首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
依据淮南矿区某矿的地质采矿条件制作模型,进行物理模拟试验,研究下保护层煤层工作面推进过程中,采动覆岩结构运动规律、采动裂隙动态演化与分布特征及被保护层煤层的应力变化和膨胀变形等规律.研究表明,在下保护层开采过程中,开采离层裂隙可发育到约100m高,采裂高厚比达44;被保护煤层沿走向卸压保护范围达到30m以上、卸压保护角为54°;在采空区四周形成一个离层裂隙发育的“O”形圈,其周边宽度约34m;被保护煤层的卸压瓦斯可通过它被抽采出来.  相似文献   

2.
远距离下保护层开采煤岩体变形特征   总被引:6,自引:0,他引:6  
依据淮南矿区某矿的地质采矿条件制作模型,进行物理模拟试验,研究下保护层煤层工作面推进过程中,采动覆岩结构运动规律、采动裂隙动态演化与分布特征及被保护层煤层的应力变化和膨胀变形等规律.研究表明,在下保护层开采过程中,开采离层裂隙可发育到约100 m高,采裂高厚比达44;被保护煤层沿走向卸压保护范围达到30 m以上、卸压保护角为54°;在采空区四周形成一个离层裂隙发育的"O"形圈,其周边宽度约34 m;被保护煤层的卸压瓦斯可通过它被抽采出来.  相似文献   

3.
针对软岩保护层开采后上覆被保护煤层卸压瓦斯治理问题,以淮北芦岭煤矿首例软岩保护层开采试验为工程背景,采用综合研究方法研究软岩保护层开采覆岩采动裂隙带演化特征。结果表明:Ⅲ11软岩保护层开采后覆岩冒落带和裂隙带最大发育高度分别为10.1~12.4,52.7~59.95 m,采空区侧及上覆被保护层煤层下部存在竖向裂隙发育区和远程离层裂隙发育区;设计地面采动井和拦截钻孔抽采覆岩8、9煤层卸压瓦斯,优化地面采动井终孔位置垂直方向距顶板法距20 m,倾斜方向距风巷或机巷平距35 m,拦截钻孔终孔位置距9煤底板5 m。考察期卸压瓦斯抽采实践表明,软岩保护层开采后覆岩"两带"发育高度的判断和卸压瓦斯富集区域的辨识是合理正确的。  相似文献   

4.
关键层结构对保护层卸压开采效应影响分析   总被引:1,自引:0,他引:1  
由于保护层卸压开采,导致覆岩结构的运动,致使上覆煤层变形,产生卸压效应,改变被卸压煤层的透气特性,为卸压瓦斯抽采创造有利条件.采用RFPA2D-Flow数值模拟软件,分析了上覆煤岩层采动裂隙演化、卸压煤层采动应力及位移分布、瓦斯参数变化等规律,结果表明:1)下保护层开采引起的上覆煤岩层采动裂隙集中分布在采场两端部,并呈竖向偏采空区方向发育,离层裂隙发育至被卸压煤层上方;2)开切眼和停采线附近区域顶板裂隙明显发育,卸压开采导致上覆煤层产生膨胀变形,透气性明显增加;3)由于被卸压煤层和保护层之间关键层结构的力学效应,使被卸压煤层透气系数增加幅度不显著,导致抽采孔瓦斯压力降低速度放缓.无关键层结构时,采动影响区内抽采孔瓦斯压力降低较快.  相似文献   

5.
邓广哲  付英凯  杨东 《煤矿安全》2020,51(9):174-178,186
以晋城矿区开采9~#煤层作为3~#煤层下保护层为工程背景,采用数值模拟手段研究下保护层开采上覆煤岩体卸压效果及被保护层煤体膨胀变形规律,并确定有效保护范围。研究结果表明:保护层回采后,上覆煤岩体具有分区卸压效应,卸压效果随与工作面垂直距离增加而降低;被保护层倾向卸压角为63°,走向卸压角为60°;采空区中部被保护层膨胀变形率保持在4‰左右,为稳定卸压区域。现场工业试验后,钻孔电视发现被保护层煤体受采动影响产生离层裂隙;煤层瓦斯参数测定指出被保护层煤体瓦斯含量、瓦斯压力分别降低至开采前50%和60%。  相似文献   

6.
围岩应力、裂隙分布特征是影响突出危险煤层瓦斯抽采效果的重要因素,为优化突出危险煤层群瓦斯预抽方案,以沙曲煤矿近距离煤层群开采为背景,采用相似模拟实验研究了保护层与被保护层双重采动影响下围岩应力-裂隙分布与演化特征。结果表明:3+4号煤初采时,叠加采动的影响下,顶底板卸压程度较一次采动影响时高,但高卸压程度阶段持续长度减少,约105 m,底板最大应力降低值可达12 MPa,是保护层开采时最大应力降低值的1.5倍;进入正常推进阶段,仅距采空区两侧煤壁一定范围L内仍保持较高裂隙发育和应力降低程度,且较保护层开采时L值减小,20~30 m,采空区中部覆岩裂隙再次闭合,围岩应力出现恢复现象;工作面推进距离一定条件下,双重采动影响下顶底板卸压程度及裂隙发育程度较一次采动影响下明显升高;被保护层开采时,3+4号煤同2号煤之间岩层破碎程度最高,裂隙最为发育,覆岩裂隙发育程度随工作面推进距离增加而升高,由于形成稳定顶板结构的随机性,覆岩裂隙频数程台阶式增长。最后将研究结果应用于沙曲煤矿高瓦斯煤层群开采时瓦斯抽采钻孔的布置设计,取得较好的抽采效果。  相似文献   

7.
研究保护层开采后覆岩裂隙的发育特征,是掌握"竖三带"法向分布高度、覆岩应力分布规律及卸压分布范围的前提。结合祁东煤矿煤层群中远距离上保护层开采现状,采用Flac3D软件模拟演化6135综采工作面开采过程中周围覆岩的位移及应力分布情况。通过分析覆岩的破坏规律,得出61煤层开采后,最大垮落高度为7.1 m,采动裂隙带发育高度为30.1 m,应力呈上小下大的"八"字形分布,以及保护层沿倾向和走向的卸压保护规律,可为矿井安全高效生产提供技术支撑。  相似文献   

8.
以晋城矿区为工程背景,开采9号煤层作为3号煤层保护层,开展下保护层开采试验。采用数值模拟手段,研究下保护层开采上覆煤岩体卸压效果及被保护层煤体膨胀变形规律,并确定有效保护范围。研究结果表明:保护层工作面开采后,上覆煤岩体出现分区卸压效应,距离工作面垂直距离越远,岩层卸压程度越不明显。被保护层倾向卸压角为63°,走向卸压角为60°。采空区中部被保护层膨胀变形率保持在4‰左右,为稳定卸压区域。现场工业试验后,通过钻孔电视发现被保护层煤体受采动影响产生了离层裂隙。煤层瓦斯参数测定表明:被保护层煤体瓦斯含量、瓦斯压力均有所降低,保护层开采起到了效果。  相似文献   

9.
为探究晋城矿区下保护层开采对上覆岩层卸压效果,综合运用数值模拟和现场实测等手段,并以该矿区开采9号煤层作为3号煤层下保护层为工程背景开展研究。采用数值模拟手段研究下保护层开采上覆煤岩体卸压效果及被保护层煤体膨胀变形规律,并确定有效保护范围。研究结果表明:保护层回采后,上覆煤岩体出现分区卸压效应,卸压效果随与工作面垂直距离增加而降低;被保护层倾向卸压角为63°,走向卸压角为60°;采空区中部被保护层膨胀变形率保持在4‰左右,为稳定卸压区域。现场工业试验后,通过钻孔电视发现被保护层煤体受采动影响产生离层裂隙。煤层瓦斯参数测定发现,被保护层煤体瓦斯含量、瓦斯压力分别降低至开采前50%和60%,表明开采9号煤层作为保护层对上覆3号煤层卸压消突效果显著。  相似文献   

10.
为了降低采煤工作面瓦斯浓度,采用保护层开采的方式对煤层进行卸压,以山西常庄矿为试验矿井,通过数值模拟对保护层开采后煤层卸压以及瓦斯运移进行研究,根据卸压和瓦斯运移特征确定了瓦斯抽采钻孔技术参数,并对抽采效果进行了检验,研究结果表明:冒落带高度为4.8m,裂隙带高度为25.2m,两侧近煤层区域裂隙发育,为裂隙发育的聚集区,形成"裂隙河";当采宽不断增大时,卸压强度增大,煤层内部应力整体呈"W"型分布;被保护层卸压分为四个区:原始压力区、压力集中区、过渡区、完全卸压区;瓦斯抽放孔最佳参数:钻孔倾角不得大于70°,封孔长度为10m,钻孔间距为30m,孔口负压为12.2k Pa;卸压瓦斯抽采浓度较卸压前大幅提高,保护层开采对于被保护层卸压起到了作用。  相似文献   

11.
《煤矿安全》2015,(9):39-43
为探索复合煤层群保护层开采过程中,在双重卸压条件下首采保护层和次采保护层过程中卸压特征的不同,采用相似材料实验、计算机数值模拟研究双重卸压覆岩裂隙发育、变形特征和应力分布时空演化规律,通过对比分析表明:在二次保护层开采条件下,覆岩部分裂隙经历了二次扩张,压实,吻合,部分裂隙在空间上往深部发育,裂隙带高度范围增加。应力在首采保护层应力状态的影响下进行再分布,随开采过程形成了5个应力分布区域,分别为工作面超前应力集中区、卸压区、压实区、采空区后方应力集中区、原岩应力区。双重卸压下采空区两端卸压效果更为显著,超前应力集中系数较首采保护层要高,采空区压实速度较首采保护层快,同时被保护层卸压程度和范围均显著增加。  相似文献   

12.
为研究近水平保护层开采后被保护层的变形规律,采用数值分析方法模拟了保护层开采过程中上覆煤层的应力、位移变化情况,获得了保护层开采后上覆煤层的裂隙发育高度,及保护层开采范围内煤层的卸压膨胀变形量为8.16‰。利用煤层顶底板变形测定仪井下实测了保护层开采过程中被保护煤层的形变量,保护范围内被保护煤层工作面的走向方向、倾斜下方及倾斜上方变形量均大于3‰,保护层卸压充分,保护效果显著。  相似文献   

13.
依据平顶山八矿煤层群赋存条件制作模型,基于相似模拟实验,模拟己15-22020工作面的情况,对保护层煤层工作面推进过程中采动覆岩结构运动规律、采动裂隙动态演化与分布特征,以及被保护层煤层的应力变化和膨胀变形等规律进行研究,结果表明,在远距离保护层开采时,被保护层卸压明显,煤层透气性增大。  相似文献   

14.
保护层开采后周围煤岩体采动裂隙分布规律的研究   总被引:1,自引:0,他引:1  
以沈煤集团红菱煤矿保护层开采为工程实例,通过开采11#煤层,对存在煤与瓦斯突出的7#煤层和12#煤层进行卸压,研究保护层开采后采动裂隙分布规律。阐述了含瓦斯煤的力学特性:通过相似模拟实验,用散斑法对保护层开采过程中采动裂隙分布规律及煤岩体的渗透性进行了分析。  相似文献   

15.
在分析上保护层开采卸压作用与防突机理基础上,利用弹性力学理论建立了上保护层开采下伏煤岩体应力变化力学模型,推导了底板任意一点应力分布计算方程,依据MohrCoulomb准则给出了底板煤岩体破坏判据。结合平煤十二矿己14-己15煤层联合开采工程案例,研究了开采上保护层底板裂隙发育深度与采高的关系,分析了不同上保护层采高条件下裂隙发育与突出煤层应力卸压规律。研究表明:随着底板深度的增加,下伏煤岩体卸压程度越来越低,卸压范围逐渐缩小,应力分布由浅部的"U"型逐渐过渡为深部的"V"型;当保护层己14-31010工作面设计采高为2.0 m时,下伏己15突出煤体裂隙发育,应力卸压率接近90%,保证卸压效果的同时可兼顾经济与社会效益。工程实例显示:己14上保护层开采后,下伏己15突出煤层瓦斯压力由1.78 MPa下降至0.35 MPa,降幅高达81%,与应力卸压理论计算结果相符。  相似文献   

16.
王海锋  程远平 《煤炭学报》2010,35(4):590-594
为确保近距离上保护层工作面的开采安全,同时有效抽采下被保护层的卸压瓦斯消除其突出危险性,开展了近距离上保护层开采工作面的瓦斯涌出规律研究,在此基础上对被保护层的卸压瓦斯抽采参数进行了优化。研究结果表明:下被保护层12煤层位于上保护层开采后形成的底臌断裂带内,层间裂隙发育充分,保护层工作面瓦斯涌出量大多来自被保护层的卸压瓦斯;在采用底板岩巷上向网格式穿层钻孔对被保护层进行卸压瓦斯抽采时,被保护层卸压瓦斯流向保护层工作面还是穿层钻孔由瓦斯在裂隙中流动形成的沿程阻力决定;被保护层12煤层穿层钻孔间距确定为1倍层间距大小,即穿层钻孔间距为16 m。工程应用表明,该设计参数能够满足保护层安全开采及被保护层消除突出危险性的要求。  相似文献   

17.
保护层开采上覆煤层变形特性数值模拟   总被引:38,自引:2,他引:36       下载免费PDF全文
基于岩石破裂损伤理论和有限元计算方法,利用RFPA应用系统模拟分析了保护层开采过程中,被保护层层厚变形规律、煤层水平变形特征和保护层与被保护层之间的相对层间距对被保护层保护效果的影响,认为随着保护层采煤工作面向前推进,被保护层垂直变形呈现 “M”型分布;卸压区煤层水平变形呈现拉抻和挤压状态,增加该区域煤体机械破坏,有利于被保护层次生裂隙的发育;相对层间距对被保护层卸压变形产生较大影响,相对层间距愈大,其变形量减小,不利于煤层离层裂隙和破断裂隙的产生.对数值模拟结果与现场实际测定结果进行对比分析,两者基本吻合.  相似文献   

18.
以沈煤集团红菱煤矿保护层开采为工程实例,通过开采11#煤层,对存在煤与瓦斯突出的7#煤层和12#煤层进行卸压,研究保护层开采后采动裂隙分布规律。通过FLAC3D模拟采动后应力场和位移场变化情况、塑性区分布范围,分析了保护层开采后煤岩体采动裂隙的分布规律。  相似文献   

19.
远程下保护层开采煤岩卸压效应研究   总被引:2,自引:0,他引:2  
基于保护层开采覆岩移动破坏特征,分析了远程下保护层开采煤岩卸压的可行性,采用FLAC2D数值模拟软件对被保护煤层的应力分布特征、煤厚变形规律、水平位移规律、卸压范围及卸压角进行了研究。结果表明:下保护层开采时,断裂带高度已发育到被保护层,煤层产生膨胀变形,生成大量的次生裂隙,使被保护煤层产生不同程度的卸压,同时水平位移的产生也有利于煤层透气性增加。在走向方向上,被保护层向保护层采空区方向内错约30 m,煤层进入稳定膨胀变形区,走向有效卸压角的大小为66°左右。研究结果应用于工程实践后,淮南某矿13-1煤层瓦斯压力由原来的4.4 MPa变为卸压后的0.7 MPa,煤层透气性系数增大了1 061倍,表明该方法是较好的区域性防突措施。  相似文献   

20.
为了探索淮南矿区深部A组煤开采远距离上行卸压B组煤的可行性,以潘二矿A3煤11223工作面及B4煤为工程背景,采用理论分析、实验室测试、相似模拟试验以及现场观测的手段,研究了覆岩不同关键层结构远距离下保护层开采采动裂隙动态演化规律和卸压特征,以及多关键层运移对被保护层卸压瓦斯涌出动态的影响。研究表明:1)沿工作面走向采动裂隙随关键层破断"跳跃式"向上扩展,岩层稳定后采空区中部裂隙被重新压实,切眼、工作面侧裂隙由于煤柱作用长期存在,共同构成"梯形裂隙区"。关键层竖向破断裂隙未贯通时,其随动岩层不会形成离层裂隙,同时对穿层裂隙的扩展也起到阻隔作用,致使保护层卸压角减小;2)沿工作面倾向裂隙分布为整体偏向上山方向的"斜梯形",倾向上部裂隙较发育。控制被保护层运移的关键层破断裂隙未贯通时,被保护层卸压系数和卸压范围均有所减小;3)由于11223工作面东一段和西二段覆岩关键层结构不同,导水裂隙发育高度存在显著差异,被保护层B4煤东、西两段煤层透气性系数分别扩大了592倍和105倍,从增透倍数和瓦斯抽采量来看,潘二矿下保护层A3煤11223工作面开采卸压B4煤是可行的,且东一段卸压效果明显优于西二段;4)由瓦斯抽采数据反演获得的各关键层破断步距与相似模拟试验结果有较好一致性,关键层的运移对被保护层瓦斯涌出动态起控制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号