首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
针对软岩保护层开采后上覆被保护煤层卸压瓦斯治理问题,以淮北芦岭煤矿首例软岩保护层开采试验为工程背景,采用综合研究方法研究软岩保护层开采覆岩采动裂隙带演化特征。结果表明:Ⅲ11软岩保护层开采后覆岩冒落带和裂隙带最大发育高度分别为10.1~12.4,52.7~59.95 m,采空区侧及上覆被保护层煤层下部存在竖向裂隙发育区和远程离层裂隙发育区;设计地面采动井和拦截钻孔抽采覆岩8、9煤层卸压瓦斯,优化地面采动井终孔位置垂直方向距顶板法距20 m,倾斜方向距风巷或机巷平距35 m,拦截钻孔终孔位置距9煤底板5 m。考察期卸压瓦斯抽采实践表明,软岩保护层开采后覆岩"两带"发育高度的判断和卸压瓦斯富集区域的辨识是合理正确的。  相似文献   

2.
王建伟 《煤炭技术》2019,(7):118-120
为防治沙区矿近距离煤层群瓦斯,研究了保护层卸压瓦斯运移规律,根据卸压瓦斯赋存特点,设计了保护层卸压瓦斯综合抽采技术:通过保护层本煤层钻孔抽采本煤层卸压瓦斯;通过顶板高位钻场钻孔抽采顶板裂隙富集瓦斯;通过沿空留巷墙体埋管抽采下煤层群卸压瓦斯。监测结果表明:被保护层煤层经卸压开采后,瓦斯抽采效果明显改善;保护层回风巷瓦斯浓度由0.58%降低至0.40%;经有效管理,沿空留巷埋管瓦斯抽采效果得到好转;保护层工作面瓦斯抽采纯量稳步提高,平均瓦斯抽采量为19.44 m~3/min,瓦斯抽采效果良好。  相似文献   

3.
为分析上保护层开采及卸压瓦斯抽采对煤层消突的作用,采用理论计算、数值模拟及现场实测相结合的方法,研究上保护层开采底板破坏深度及卸压范围,优化卸压瓦斯抽采参数。研究表明:当煤层采高为1.4 m时,上保护层开采后煤层卸压深度为13.8~17.9 m,走向卸压角为59°,倾向卸压角为74°;对被保护层使用底抽巷网格式上向钻孔抽采,穿层钻孔终孔间距为15 m,终孔位置距2#煤层顶板约0.5 m,钻孔直径不小于100 mm;卸压瓦斯的抽采浓度达42.5%,被保护层保护范围内的瓦斯压力降为0.55 MPa,残余瓦斯含量降为5.214 m3/t,消除了突出危险性。  相似文献   

4.
关键层结构对保护层卸压开采效应影响分析   总被引:1,自引:0,他引:1  
由于保护层卸压开采,导致覆岩结构的运动,致使上覆煤层变形,产生卸压效应,改变被卸压煤层的透气特性,为卸压瓦斯抽采创造有利条件.采用RFPA2D-Flow数值模拟软件,分析了上覆煤岩层采动裂隙演化、卸压煤层采动应力及位移分布、瓦斯参数变化等规律,结果表明:1)下保护层开采引起的上覆煤岩层采动裂隙集中分布在采场两端部,并呈竖向偏采空区方向发育,离层裂隙发育至被卸压煤层上方;2)开切眼和停采线附近区域顶板裂隙明显发育,卸压开采导致上覆煤层产生膨胀变形,透气性明显增加;3)由于被卸压煤层和保护层之间关键层结构的力学效应,使被卸压煤层透气系数增加幅度不显著,导致抽采孔瓦斯压力降低速度放缓.无关键层结构时,采动影响区内抽采孔瓦斯压力降低较快.  相似文献   

5.
为防止被保护层卸压瓦斯大量涌向保护层工作面,进而造成Y型通风工作面回风巷和采空区瓦斯超限,依据保护层开采卸压理论以及采空区上覆岩层“裂隙三带”中的瓦斯运移规律,采用在Y型通风工作面布置高位钻孔抽采被保护层卸压瓦斯,并在羊东矿现场对高位钻孔关键参数进行了设计,终孔位置高度设计为24 m,倾向控制范围设计为9.5~60.0 m,终孔间距设计为10 m.现场应用结果表明:高位钻孔瓦斯抽采率为60.8%,回风巷平均瓦斯体积分数维持在0.27%,最高为0.46%,杜绝了Y型通风工作面回风巷和采空区瓦斯超限.  相似文献   

6.
为了对比分析在近距离煤层群条件下有保护层和无保护层开采时下伏煤层开采的卸压效果,采用数值计算及现场验证的方法对有无保护层开采时下伏煤层开采时卸压程度进行了研究,得到了有保护层和无保护层开采时,被保护层在开采过程中的垂直应力、卸压范围及塑性区变化规律。研究表明:在有保护层开采时,被保护层的卸压范围相对增大且应力集中系数相对较小,而塑性区发育范围相对增大。现场抽采数据表明:无保护层开采时抽采浓度、纯量相对14207工作面有保护层开采时偏低,有保护层开采时抽采效果更好,为优化底抽巷卸压瓦斯抽采系统,提高瓦斯抽采质量浓度、抽采量以及抽采率提供了一定理论依据。  相似文献   

7.
针对祁东煤矿煤层群中远距离上保护层开采时,被保护层施工穿层钻孔发生严重的钻孔突出等问题,研究了上保护层开采被保护层卸压瓦斯流动滞后的时空规律,用于被保护层卸压瓦斯抽采。研究表明:被保护的9煤层底板穿层钻孔滞后上覆71煤层工作面平面位置20~25 m施工钻孔进行卸压抽采,解决了被保护层超前预抽及卸压抽采存在的钻孔突出、煤孔段塌孔,以及卸压抽采封孔段漏气等问题,提高了抽采效果。  相似文献   

8.
针对低瓦斯厚煤层高强综放开采卸压瓦斯治理问题,采用物理模拟、数值分析和现场监测方法,研究工作面开采初期和稳定时期覆岩结构演化及裂隙场分布特征,揭示了考虑采动裂隙场的卸压瓦斯场分布特征;依据研究获得采动瓦斯聚集区分布,提出采用高位定向长钻孔治理采空区卸压瓦斯,并进行了效果检验。结果表明:工作面推进至135 m后,覆岩结构和裂隙演化基本稳定,垮落带发育高度为25~27 m,裂隙带发育高度为75~95 m,弯曲下沉带发育高度达到110 m左右;采动裂隙带瓦斯聚集区位于距回风巷25~55 m、高度距煤层顶板25~50 m范围内;高位定向长钻孔瓦斯抽采技术实施后,抽采平均浓度为5.8%,平均流量为0.71m~3/min,工作面上隅角和回风流瓦斯浓度均小于0.8%,瓦斯治理取得较好效果,为类似条件下的卸压瓦斯治理提供参考。  相似文献   

9.
针对深部矿井无常规保护层的高瓦斯低透气煤层的安全开采问题,提出"采-选-抽-充-防"集成型绿色开采技术。利用UDEC离散元软件,模拟分析了上保护层开采下充填控制裂隙瓦斯通道演化规律,结果表明:被保护层采动裂隙发育区近似呈"O"形圈分布,且"O"形圈裂隙分布范围随工作面推进逐渐前移,"O"形圈裂隙发育高度对被保护层瓦斯抽采起到了关键作用。基于保护层卸压开采的原则,提出上保护层开采下充实率优化设计流程,并确定平煤十二矿己_(15)煤层充填开采充实率为40%。己_(15)-31010工作面瓦斯抽采的工程实践表明,充实率为40%条件下被保护层瓦斯抽采效果良好,瓦斯压力下降高达80%,瓦斯抽采率高达66%,彻底消除了己_(15)煤层煤与瓦斯突出危险。  相似文献   

10.
王海锋  程远平 《煤炭学报》2010,35(4):590-594
为确保近距离上保护层工作面的开采安全,同时有效抽采下被保护层的卸压瓦斯消除其突出危险性,开展了近距离上保护层开采工作面的瓦斯涌出规律研究,在此基础上对被保护层的卸压瓦斯抽采参数进行了优化。研究结果表明:下被保护层12煤层位于上保护层开采后形成的底臌断裂带内,层间裂隙发育充分,保护层工作面瓦斯涌出量大多来自被保护层的卸压瓦斯;在采用底板岩巷上向网格式穿层钻孔对被保护层进行卸压瓦斯抽采时,被保护层卸压瓦斯流向保护层工作面还是穿层钻孔由瓦斯在裂隙中流动形成的沿程阻力决定;被保护层12煤层穿层钻孔间距确定为1倍层间距大小,即穿层钻孔间距为16 m。工程应用表明,该设计参数能够满足保护层安全开采及被保护层消除突出危险性的要求。  相似文献   

11.
为防止被保护层中瓦斯大量涌向保护层工作面,造成其工作面上隅角和回风巷瓦斯超限,基于采空区上覆岩层"三带"中瓦斯运移规律,利用高位钻孔抽放被保护层卸压瓦斯。通过在羊东矿8458工作面应用实践,采用理论计算与数值模拟确定裂隙发育带的高度,并对高位钻孔参数进行优化设计,结果表明:该工作面单孔纯瓦斯抽采量由0.5m3/min提高到0.8m3/min,回风巷瓦斯浓度由0.9%降低到0.4%,上隅角瓦斯浓度由1.2%降低到0.6%,提高了瓦斯抽放率,保证了工作面安全回采。  相似文献   

12.
为了保证被保护层瓦斯的消突和治理工作,掌握保护层开采的卸压效果和预测卸压瓦斯的主要分布区域,运用UDEC离散元模拟得到了下保护层开采后被保护层的卸压效果、瓦斯运移规律及分布情况,并根据模拟结果相应地提出了留巷钻孔法抽采卸压瓦斯,实现了无煤柱开采,消除了被保护层应力集中区煤与瓦斯突出危险威胁。经现场实测抽采后3号煤层瓦斯压力降低了1.36 MPa,瓦斯含量降低了9.51 MPa,抽采效果良好。  相似文献   

13.
针对淮北矿区远距离下保护层卸压瓦斯抽采存在的问题,分析了采动裂隙发育及瓦斯流动规律,研究本煤层巷道穿层钻孔抽采邻近层卸压瓦斯技术,在本煤层巷道施工网格式穿层钻孔,对工作面上方采动范围内的煤层全覆盖控制,穿层钻孔在回采前预抽被保护层瓦斯,回采时高效抽采邻近层卸压瓦斯,回采后成为层间离层裂隙的主要通道,将采动影响范围内的煤层卸压瓦斯导入采空区,再通过其他钻孔将瓦斯抽出。研究认为,扩大钻孔抽采控制范围,对卸压瓦斯层层拦截抽采,能有效减少卸压瓦斯涌入回采空间;穿层钻孔能成为层间离层裂隙的有效通道,使煤层卸压瓦斯充分流动,能够提高卸压瓦斯抽采效果。  相似文献   

14.
为了探索淮南矿区深部A组煤开采远距离上行卸压B组煤的可行性,以潘二矿A3煤11223工作面及B4煤为工程背景,采用理论分析、实验室测试、相似模拟试验以及现场观测的手段,研究了覆岩不同关键层结构远距离下保护层开采采动裂隙动态演化规律和卸压特征,以及多关键层运移对被保护层卸压瓦斯涌出动态的影响。研究表明:1)沿工作面走向采动裂隙随关键层破断"跳跃式"向上扩展,岩层稳定后采空区中部裂隙被重新压实,切眼、工作面侧裂隙由于煤柱作用长期存在,共同构成"梯形裂隙区"。关键层竖向破断裂隙未贯通时,其随动岩层不会形成离层裂隙,同时对穿层裂隙的扩展也起到阻隔作用,致使保护层卸压角减小;2)沿工作面倾向裂隙分布为整体偏向上山方向的"斜梯形",倾向上部裂隙较发育。控制被保护层运移的关键层破断裂隙未贯通时,被保护层卸压系数和卸压范围均有所减小;3)由于11223工作面东一段和西二段覆岩关键层结构不同,导水裂隙发育高度存在显著差异,被保护层B4煤东、西两段煤层透气性系数分别扩大了592倍和105倍,从增透倍数和瓦斯抽采量来看,潘二矿下保护层A3煤11223工作面开采卸压B4煤是可行的,且东一段卸压效果明显优于西二段;4)由瓦斯抽采数据反演获得的各关键层破断步距与相似模拟试验结果有较好一致性,关键层的运移对被保护层瓦斯涌出动态起控制作用。  相似文献   

15.
《煤》2015,(10):19-21
针对急倾斜突出煤层群瓦斯抽采作业的特殊性,基于急倾斜煤层顶板冒落规律,对被保护层瓦斯抽采效果进行分析,研究被保护层卸压瓦斯运移规律。研究结果表明:受急倾斜煤层采面倾斜上、中、下段岩层移动程度不同的影响,被保护层沿倾斜方向由下至上产生的裂隙逐步增大并彼此贯通,下部煤层卸压瓦斯沿着裂隙往上部流动,上部风巷抽采瓦斯浓度是机巷的2~3倍,流量是机巷的3~4倍,倾斜段上部瓦斯卸压效果明显。  相似文献   

16.
急倾斜俯伪斜上保护层开采的卸压瓦斯抽采优化设计   总被引:10,自引:1,他引:9       下载免费PDF全文
为有效抽采东林煤矿急倾斜俯伪斜上保护层开采的卸压瓦斯,对该矿俯伪斜上保护层开采的卸压瓦斯抽采优化设计进行了研究,采用俯伪斜上保护层开采的数值模拟与现场考察试验相结合的方法,研究了东林煤矿俯伪斜上保护层开采后被保护层的卸压规律;利用保护层开采的“卸压增透效应”,结合该矿实际条件,优化设计了俯伪斜上保护层开采的卸压瓦斯抽采参数.研究结果表明:东林煤矿俯伪斜上保护层开采的卸压瓦斯抽采参数按照抽采钻场间距30~40 m、钻孔的有效抽采半径9 m、抽采钻孔的终孔间距15~20 m、抽采钻孔仰角10~62°和抽采时间为从保护层工作面前方40 m到后方135 m等进行设计是合理的,且使卸压瓦斯平均抽采率达到50%.  相似文献   

17.
为了预防生产矿井的煤与瓦斯突出,利用保护层开采过程中的被保护层的卸压作用对卸压瓦斯进行强化抽采,使被保护层由高瓦斯突出危险煤层变为低瓦斯无突出危险煤层,实现对煤与瓦斯突出煤层的消突.应用数值模拟软件进行模拟,对下保护层开采后顶板覆岩的卸压程度、煤岩层移动变形、岩体裂隙发育和煤层卸压瓦斯抽采方法进行系统的研究.结果表明,被保护层的膨胀变形使得被保护范围内的围岩体内部形成大量孔道和裂隙,煤层的透气性增大.被保护层地压减小,弹性潜能得到缓慢释放.开采保护层结合采取相应的瓦斯抽放措施,对于防治深部煤层瓦斯突出和实现煤矿安全生产具有重要的意义.  相似文献   

18.
改进钻孔成孔与封孔工艺,可以提高被保护层卸压瓦斯抽采效果。下峪口煤矿试验区2~#煤层与被保护3~#煤层间距较小,通过上保护层2~#煤层沿空留巷下向穿层钻孔抽采3~#煤层卸压瓦斯,提高了被保护层3~#煤层的透气性,进一步扩大瓦斯抽采的保护范围。总结形成了沿空留巷下向穿层钻孔封孔工艺及抽采钻孔优化布置等技术,为矿井保护层开采提供了技术支撑。  相似文献   

19.
远距离下保护层开采煤岩体变形特征   总被引:6,自引:0,他引:6  
依据淮南矿区某矿的地质采矿条件制作模型,进行物理模拟试验,研究下保护层煤层工作面推进过程中,采动覆岩结构运动规律、采动裂隙动态演化与分布特征及被保护层煤层的应力变化和膨胀变形等规律.研究表明,在下保护层开采过程中,开采离层裂隙可发育到约100 m高,采裂高厚比达44;被保护煤层沿走向卸压保护范围达到30 m以上、卸压保护角为54°;在采空区四周形成一个离层裂隙发育的"O"形圈,其周边宽度约34 m;被保护煤层的卸压瓦斯可通过它被抽采出来.  相似文献   

20.
大倾角突出煤层群保护层工作面开采过程中出现的保护层工作面上隅角瓦斯超限问题和被保护层瓦斯抽采难题亟待解决.以矿压理论为基础,研究了保护层工作面顶板"三带"的合理高度,提出了大倾角突出煤层群保护层工作面顶板岩层裂隙带高位中小钻孔瓦斯抽采技术,通过湖南煤业集团蛇形山煤矿2344工作面研究结果表明,该技术提高了瓦斯抽采量和瓦斯抽采浓度,解决了保护层工作面上隅角瓦斯超限问题,同时又拦截了被保护层涌出的瓦斯,为类似煤层瓦斯抽采提供了理论和实践依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号