首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
还原焙烧—磁选是处理镁质红土镍矿的常用工艺,为考察还原焙烧—磁选过程中各因素对镍分选效果的影响规律,研究以青海某低品位镁质红土镍矿为原料,采用正交试验方法进行试验,并对正交试验结果进行了极差和方差分析。结果表明,料层厚度和磁场强度是影响还原焙烧—磁选镍粗精矿产率及回收率的显著因素,而焙烧温度、焙烧时间以及还原剂用量是影响还原焙烧—磁选镍粗精矿产率及回收率的不显著因素。还原焙烧—磁选分选镍的粗选作业最优条件为:还原剂用量为5%、还原温度为800℃、料层厚度为10mm、还原时间为30 min、磁场强度为200 k A/m,在此条件下,可获得产率22.88%、回收率38.99%的镍粗精矿。研究对镁质红土镍矿现场生产具有重要的参考意义。  相似文献   

2.
针对澳大利亚某红土镍矿的矿物组成及比较国内外红土镍矿处理工艺,选择还原—磨选法处理该红土镍矿。固定磨选制度,研究还原温度、还原时间、还原剂配比、添加剂配比、料层厚度等因素对镍和钴直收率及其镍和钴平均品位的影响。结果表明,合适工艺条件:原料粒度-121+96mm、还原剂配比5.0%、添加剂配比5.0%,均匀混合,制成约15 mm×15 mm×20 mm球团,烘干,还原温度1 250℃,料层厚度40 mm,还原时间30 min;还原后通保护气氛冷却到室温,粉碎,进行磨选,矿浆浓度60%,球磨时间2.0 h,采用100 kA/m磁场强度磁选,磁选精矿再重选。在此工艺条件下,镍和钴的直收率分别达到88.29%和86.09%,镍钴合金粉末中镍和钴平均品位分别为9.92%和0.96%。  相似文献   

3.
针对澳大利亚某红土镍矿的矿物组成及比较国内外红土镍矿处理工艺,选择还原—磨选法处理该红土镍矿.固定磨选制度,研究还原温度、还原时间、还原剂配比、添加剂配比、料层厚度等因素对镍和钴直收率及其镍和钴平均品位的影响.结果表明,合适工艺条件:原料粒度-121+96mm,还原剂配比5.0%、添加剂配比5.0%,均匀混合,制成约15 mm×15 mm×20 mm球团,烘干,还原温度1 250℃,料层厚度40 mm,还原时间30 min;还原后通保护气氛冷却到室温,粉碎,进行磨选,矿浆浓度60%,球磨时间2.0 h,采用100kA/m磁场强度磁选,磁选精矿再重选.在此工艺条件下,镍和钴的直收率分别达到88.29%和86.09%,镍钴合金粉末中镍和钴平均品位分别为9.92%和0.96%.  相似文献   

4.
以褐煤、烟煤、无烟煤和兰炭作为还原剂, 对低品位红土镍矿进行了直接还原焙烧-磁选实验研究。结果表明, 还原剂种类、粒度和用量对还原过程有较大影响, 其中褐煤作为还原剂时还原效果最好。最佳实验条件为: 红土镍矿原料粒度-0.075 mm, 还原剂(褐煤)粒度为-0.25 mm、用量4%, 焙烧温度1 200 ℃, 焙烧时间90 min, 焙烧后焙砂磨细至-0.05 mm, 在磁场强度0.3 T下粗选再在0.1 T下精选, 可得到镍品位3.2%、镍回收率82%、铁品位65%、铁回收率69%的镍铁精矿。  相似文献   

5.
为开发利用印尼某铁品位为49.42%、含镍0.44%的红土镍矿体顶部覆盖的风化壳,对其进行了还原焙烧—磁选工艺试验。结果表明:在还原剂用量为5%、焙烧温度为800℃、焙烧时间为15 min、焙烧矿水萃冷却后磨细至-0.074 mm占85%、磁场强度为96 k A/m条件下磁选,可获得铁品位为60.60%、回收率为91.60%的铁精矿,为该类型矿石的开发利用提供了依据。  相似文献   

6.
裴晓东  钱有军 《金属矿山》2013,42(12):57-60
印度尼西亚某低品位红土镍矿含镍1.57%、含铁21.67%,其中镍主要以硅酸镍形式存在。为将该矿石的镍含量提高到6%以上以符合印度尼西亚政府对出口红土镍矿的规定,以硫酸钠和碳酸钠为助熔剂,进行了还原焙烧-弱磁选试验。试验结果表明,当煤用量为25%、硫酸钠+碳酸钠的配比和总用量分别为3∶1和20%、焙烧温度为1 200 ℃、焙烧时间为60 min、磨矿细度为-0.074 mm占85%、磁场强度为96 kA/m时,可获得产率为22.06%、镍品位为6.05%、镍回收率为85.03%、铁品位为65.74%、铁回收率为66.92%的镍铁精矿,其镍品位超过印度尼西亚出口红土镍矿的品位下限。  相似文献   

7.
为进一步探究还原焙烧—弱磁选富集工艺处理红土镍矿的试验效果及可行性,在实验室小型试验基础上,在44 m推板烧结窑上进行了还原焙烧半工业试验。结果表明,焙烧温度为1 150℃左右,焙烧时间为90 min,煤配比为20%,助溶剂组分元明粉、苏打、硼砂配比为6∶2∶1、用量为22.5%,还原产品磨矿细度为-0.074 mm占85%,弱磁选磁场强度为80 kA/m情况下,可获得含Ni 6.39%、回收率73.84%,含Fe 77.72%、回收率64.24%的镍铁精矿。该镍铁精矿可作为产品直接出售,也可进一步精炼为高品位镍铁合金,实现了该腐殖型红土镍矿的有效利用。  相似文献   

8.
以三种煤为还原剂,研究了不同煤种对镍红土矿还原焙烧—磁选的影响,结果表明,煤的种类对还原过程有较大影响,石煤为还原剂时,镍铁精矿中可获得较高的镍品位和回收率,而铁的品位和回收率较低,可以实现镍的选择性还原。确定的最佳工艺条件为石煤作还原剂,用量为5%,IN为助熔剂,用量为15%,焙烧温度为1250℃,焙烧时间为40min。在此条件下可以得到镍品位8.97%、镍回收率82.64%的镍铁精矿。  相似文献   

9.
采用还原焙烧-磁选工艺, 对氯化钙作用下镁质贫镍红土矿选择性富集镍进行了研究, 考察了还原温度、还原时间、还原剂用量和氯化钙用量对富集镍的影响。结果表明, 在还原温度1 200 ℃、还原时间40 min、还原剂和氯化钙用量均为8%的条件下, 可获得镍品位8.67%、回收率92.01%的镍铁精矿; 相比于直接还原焙烧-磁选, 加入8%氯化钙后使镍的富集比由3增加到11, 显著提高了镍的富集效果。磁选产品物相分析显示, 镍主要以铁纹石形式存在于精矿中, 通过磁选实现了对镍铁精矿与脉石的有效分离。  相似文献   

10.
回转窑直接还原—磁选是处理红土镍矿制备镍铁合金粉的重要工艺之一,然而通过回转窑高温还原—干式磁选所得的粗镍铁富集物中,镍、铁的品位较低,难以满足后续电炉冶炼的要求,故需要对其进行强化磨选试验.基于红土镍矿还原矿的工艺矿物学研究,考察了球磨时间、磁场强度、高压辊磨对磁选效果以及解离度的影响.结果表明:高温还原后,粗镍铁富...  相似文献   

11.
The known resources of nickel sulphide ores are quickly diminishing and in order to satisfy future nickel demands, nickel laterite deposits are being investigated as an alternative. Currently, expensive leaching and smelting processes are used to process the nickel laterite ores. The objective of the present research was to produce a high grade nickel concentrate via microwave carbothermic reduction roasting followed by magnetic separation. A thermodynamic model was developed for the roasting process in order to determine the optimum experimental conditions. The experimental variables investigated were: microwave energy and argon shrouding for the reduction tests and the magnetic field strength for the concentration stage. The behaviours of nickel and cobalt were studied in the reduction and magnetic separation processes. By optimizing the reducing and magnetic separation conditions, a high grade concentrate containing 9.2% nickel with a nickel recovery of 88.8% was achieved.  相似文献   

12.
喻连香  汤优优  刘军  陈雄 《金属矿山》2020,50(5):185-190
马拉维海滨砂钛铁粗精矿中含钛矿物占有率大于95%,TiO2含量仅为42.71%,部分钛铁矿物赤铁矿化蚀变明显。为确定钛铁粗精矿选冶提质工艺,以该地区海滨砂经重选—磁选工艺处理后获得的钛铁粗精 矿为研究对象,通过详细的工艺矿物学研究及条件试验,优化出选冶流程中适宜的工艺参数。钛铁粗精矿焙烧试验最佳的还原条件为:还原焙烧温度875 ℃、还原时间12.5 min,还原剂用量5%。焙砂经1次弱磁粗选、 中磁扫选,最终可获得TiO2含量49.05%、TiO2回收率77.16%的钛铁矿精矿以及Fe含量49.73%、Fe回收率34.61%的铁精矿,TiO2含量从42.71%提高到49.05%,精矿品质得到大幅度提升。该选冶联合工艺流程简单,无药 剂污染,可为该类难分离钛铁粗精矿资源的有效利用提供技术途径。  相似文献   

13.
智谦 《金属矿山》2016,45(4):77-81
回转窑直接还原红土镍矿存在所需温度高、对耐火材料要求苛刻、还原指标差等问题。为开发一种高效低成本的红土镍矿球团还原工艺,考察了以CaO为熔剂改变红土镍矿碱度对红土镍矿球团还原焙烧-弱磁选效果的影响。结果表明:自然碱度下,在还原温度为1 400 ℃、还原时间为60 min时,所得还原产品经磨矿-弱磁选,获得的磁性产品镍、铁品位分别仅3.8%和72.9%,回收率分别为17.8%和39.8%,磁性产品中含有较多的镁橄榄石和顽火辉石;随着红土镍矿碱度的增加,红土镍矿的软熔温度先降低后提高,碱度为1.0时,红土镍矿的软熔温度最低,比自然碱度时降低了100 ℃;碱度为1.0的红土镍矿球团在1 300 ℃下还原焙烧60 min后,经磨矿-弱磁选,获得的磁性产品镍、铁品位分别为8.7%和83.8%,回收率分别为85.6%和62.8%。XRD和扫描电镜分析结果表明:自然碱度的红土镍矿还原焙烧生成的Fe-Ni合金晶粒多在5 μm以下,并且分布比较分散,还原产品中夹杂有较多的杂质;添加CaO至碱度为1.0时,Fe-Ni合金晶粒可以长大到10~50 μm,还原产品中杂质较少,镍和铁得到了明显的富集。试验结果可以为红土镍矿球团还原焙烧-磁选制取镍铁新工艺提供理论基础。  相似文献   

14.
针对老挝某难选褐铁矿,采用“还原焙烧-弱磁选”工艺流程选铁,首先进行了原矿还原焙烧单因素试验,研究了焙烧温度、焙烧时间和碳粉用量对精矿品位及回收率的影响,结果表明,原矿经充分还原焙烧后磁选,铁精矿铁品位均达到61%以上。在单因素试验基础上,借助响应曲面法建立模型设计实验方案,对还原焙烧工艺参数进行优化,探讨三因素交互作用对精矿回收率的影响,得到优化后的还原焙烧工艺条件为:焙烧温度873 ℃、焙烧时间75 min和碳粉用量2 g(相对50 g原矿),在优化条件下进行验证试验,精矿回收率达到91.99%。验证试验结果表明,实际试验值与优化预测结果相差1.09%,该试验模型可信度较高。  相似文献   

15.
利用生物质磁化焙烧赤铁矿,分别研究了焙烧温度、焙烧时间、生物质用量等实验条件对铁矿石磁化焙烧效果的影响,确定最佳实验条件为焙烧温度700℃,焙烧时间50min,生物质用量8%,对焙烧产品进行磁选可达到品位61.48%、回收率91.31%的铁精矿。对焙烧产品进行XRD分析表明,焙烧产品中铁物相主要为磁铁矿,说明利用生物质作为还原剂焙烧赤铁矿可以达到还原的效果。  相似文献   

16.
本文简要介绍了镍资源的性质特点及现状,分析了红土镍矿回转窑-电炉还原熔炼、还原焙烧-磁选、还原硫化熔炼3种火法工艺以及常压酸浸、高压酸浸等湿法工艺的优势与短板,并指出生物浸出在红土镍矿处理中的应用,探讨了未来红土镍矿冶金工艺的改进发展,指出红土镍矿湿法冶金将在今后扮演重要地位。  相似文献   

17.
红土镍矿深度还原-磁选试验研究   总被引:2,自引:0,他引:2  
采用深度还原-弱磁-强磁工艺对低品位红土镍矿进行了开发利用研究,重点研究了深度还原合适的温度、还原时间、配碳系数、料层厚度、强磁精矿返回量等参数。研究表明,适宜的深度还原条件为:还原温度1 275 ℃、还原时间50 min、配碳系数2.5、料层厚度25 mm、强磁精矿返回量占原矿量的25%,还原产物经弱磁选(场强为130 kA/m),可获得镍、铁品位分别为6.96%、34.74%,镍、铁总回收率分别为94.06%、80.44%的优质镍铁精矿产品;同时富含大量细小镍铁颗粒的强磁精矿是红土镍矿深度还原的优质成核剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号