首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
在对瓦斯泥进行样品性质研究的基础上,采用浮选—磁选—重选的原则流程,回收碳、铁、锌三种有用元素。试验结果表明,当柴油用量为500 g/t,2#油用量为25 g/t,六偏磷酸钠用量为100 g/t,矿浆浓度为10%,采用一粗两精一扫工艺,可获得固定碳含量66.12%、回收率66.19%的碳精矿产品。对碳尾矿进行弱磁选—强磁选工艺,可得到铁品位为53.97%、回收率94.86%的铁精矿。对铁尾矿进行重选试验,使用悬振锥面选矿机最终使锌富集至18.99%,回收率为77.03%。该试验流程为类似瓦斯泥的回收利用提供了基础数据。  相似文献   

2.
广西某难选褐铁矿原矿铁品位为36.71%。针对该矿性质,采用强磁选、重选、浮选、还原焙烧-弱磁选等工艺进行了选矿试验研究。结果表明,采用还原焙烧—弱磁选的联合工艺流程获得的选矿指标远高于其它选矿方法,该工艺最终获得铁品位为58.76%、铁回收率为82.86%的铁精矿产品。  相似文献   

3.
对含铁品位为37.89%的武钢高炉瓦斯泥,进行理化性能分析和矿物工艺学研究,采用磁选、重选(摇床、螺旋溜槽)等方法进行铁矿物回收,试验研究表明,采用两段重选工艺流程处理武钢高炉瓦斯泥,可获得精泥产率31.81%、含铁品位61.51%、铁回收率51.64%较理想指标,其中SiO2、Al2O3、CaO、MgO的含量都能满足高炉冶炼的要求。试验采用的重选工艺回收铁,对瓦斯泥的适应性强,便于生产操作和管理。   相似文献   

4.
关于江西某褐铁矿选矿工艺的探讨   总被引:1,自引:0,他引:1  
薛伟  罗琳  关欣  谢超 《中国矿业》2007,16(6):75-76,81
江西某铁矿主要为褐铁矿,该矿含泥含水大且可选性差。本研究采用浮选、重选、磁选和磁化焙烧等选矿方法进行了试验研究。试验表明,在原矿品位37.16%的情况下,磁化焙烧工艺可获得铁精矿品位在65%左右,回收率80%左右的技术指标。如果从当地能源情况和经济方面考虑,也可采用,弱磁选-强磁选-正浮选工艺或者分级-重选-细粒浮选工艺联合流程。  相似文献   

5.
张玲  王素玲 《矿冶工程》2017,37(4):48-50
对铁品位34%左右的某铜铁矿山选铜尾矿进行了单一强磁选、强磁选-重选、强磁选-磨矿-反浮选、强磁选-磨矿-强磁选-反浮选、磨矿-强磁选-反浮选的多方案试验研究, 经对比分析, 最终确定采用磨矿-强磁选-反浮选工艺, 可获得精矿铁品位63.17%、回收率70.30%的良好指标。  相似文献   

6.
陈建福  陈发上  张莉  陈宇  涂友兵 《现代矿业》2018,34(11):106-109
针对铅火法冶炼渣中成分复杂、多金属难回收等问题,分别开展了重选、浮选、磁选、磁选-重选试验研究工作,对比分析了其综合回收工艺指标。试验结果表明:单一重选、浮选、磁选工艺均不能得到较好的指标,而重选-磁选联合工艺可得到较为合理的产品指标,获得的铁精矿品位为55.47%,铅精矿品位为46.13%,实现了铅废渣的多金属回收利用。  相似文献   

7.
对某矿山代表性矿样进行了矿石性质及选矿工艺试验研究, 进行了单一磁选、焙烧-磁选、磁选-反浮选、焙烧-磁选-反浮选等方案对比。结果表明, 焙烧-磁选-反浮选能获得合格铁精矿, 在最终磨矿细度-0.037 mm粒级占75%时, 对品位32.50%的原矿经过三段磁选、三段浮选, 可获得精矿铁品位59.94%、铁回收率72.84%、尾矿品位16.13%的选别指标, 精矿中主要杂质SiO2含量8.47%。  相似文献   

8.
为合理利用国外某褐铁矿石,在对原矿性质分析的基础上对原矿进行了连续磨矿—单一强磁选、阶段磨矿—单一强磁选、连续磨矿—螺旋溜槽重选—强磁选3种不同的选矿工艺流程试验,最终确定采用连续磨矿—螺旋溜槽重选—强磁选流程选别,最终获得了产率为51.80%、铁品位为62.85%、铁回收率为70.50%的铁精矿,取得了较好的工艺指标。  相似文献   

9.
云南某低品位难选铁锡矿中铁、锡品位分别为30.91%和0.23%,主要回收矿物为磁铁矿和锡石。为充分回收矿石中的有价组分,依据原矿性质,确定采用磁选选铁—浮选选硫—脱泥—锡石选别(重选+浮选)的工艺流程进行选矿试验研究。原矿经过1粗1精两段磁选可以获得铁品位60.69%、铁回收率78.63%的弱磁精矿。弱磁尾矿经过1粗1精2扫选硫后,选硫尾矿中硫品位降至0.46%,硫精矿锡作业回收率仅为6.88%。将浮硫尾矿筛分为+0.043 mm和-0.043 mm粒级样,+0.043 mm粒级样通过摇床能获得锡品位6.48%、锡作业回收率52.54%的摇床精矿产品; -0.043 mm粒级样经水析脱除-0.01 mm细泥后,以水杨羟肟酸+GZ为锡石捕收剂,2号油为起泡剂,闭路浮选最终可获得锡品位5.69%、锡作业回收率70.23%的锡精矿产品,尾矿中锡品位降至0.12%。全流程试验最终获得铁品位60.69%、铁回收率78.63%的磁铁精矿,锡品位5.92%、锡回收率31.93%的锡精矿,总尾矿中锡品位降至0.14%,实现了该铁锡矿资源的综合回收。  相似文献   

10.
四川某铁尾矿中铁和硫的综合回收选矿试验   总被引:2,自引:2,他引:0  
四川某铁矿磁选尾矿中含有一定量的铁矿物和硫矿物可以综合回收。根据该尾矿的矿石性质,采用筛分分级--0.5 mm重选预富集-重选粗精矿浮选选硫-浮选尾矿磁选选铁的工艺流程进行选矿试验,获得了硫精矿、强磁性铁精矿和弱磁性铁精矿3种产品。硫精矿硫品位和硫回收率分别为39.66%和82.54%,强磁性铁精矿铁品位和铁回收率分别为62.28%和32.59%%,弱磁性铁精矿分别为51.87%和5.36%。  相似文献   

11.
瓦斯泥中碳的提取一般采用浮选,柴油或煤油为捕收剂,2#油作起泡剂,然而对于不同性质的瓦斯泥,浮选效果却大不相同。为了详细研究各种因素对瓦斯泥高效浮选提碳的影响,本文针对某地瓦斯泥提碳浮选设计了正交试验,并对试验结果进行了极差分析。研究表明,对于固定碳含量和精矿回收率而言,矿浆浓度和高效浮选药剂的用量对其影响最大。该试验研究结果为类似性质的瓦斯泥浮选提碳具有一定的参考价值。  相似文献   

12.
一种难选铁矿石磁选精矿的浮选新工艺研究   总被引:1,自引:1,他引:0  
为了更好地解决含碳酸盐铁矿石磁选精矿的浮选问题,进行了添加分散剂的直接反浮选新工艺试验研究。研究结果表明,添加分散剂可以削弱碳酸铁对反浮选带来的不利影响,获得品位为66.26%、回收率为70.23%的铁精矿,流程结构较为简单。  相似文献   

13.
张晋霞  邹玄  张晓亮  牛福生 《中国矿业》2015,24(4):96-99,104
在对高炉瓦斯泥性质、矿物成分分析的基础上,采用选冶联合技术对其有价元素进行了提取研究。试验研究表明,瓦斯泥原料经摇床分选后,获得了铁品位为53.25%,回收率为51.05%的铁精矿;摇床尾矿经浮选柱一次粗选两次精选工艺流程,得到碳品位为74.21%、作业回收率为66.39%的碳精矿;最终尾矿采用硫酸进行浸锌试验,锌的浸出率可达97.85%,向浸出液中加入硫化钠用量为200kg/t时,Zn回收率达到86.36%。  相似文献   

14.
济钢高炉瓦斯泥的可选性研究   总被引:1,自引:1,他引:1  
济钢瓦斯泥中主要有用元素是铁和碳,铁主要以假象赤铁矿,碳以焦炭的形式存在。磨矿对瓦斯泥的可选性有较大的影响,磨矿后以柴油为捕收剂浮选,可得碳品位71.89%,回收率58.30%的碳精矿,浮选尾矿用摇床回收铁,可得铁品位61.11%,回收率46.13%的铁精矿。对瓦斯泥中铁矿物的可浮性也进行了探索。  相似文献   

15.
应用X射线衍射、化学多元素、粒度和金属分布、光学显微镜等研究分析方法,对齐大山反浮选尾矿的化学元素组成、粒度分布特征及单体解离度特征等理化性质进行了系统研究,并对该尾矿进行了再选研究。结果表明:尾矿中铁矿物以赤铁矿为主,主要富集于细粒级中,主要脉石矿物为石英。再选试验采用脱泥-筛分-重选-磁选-反浮选联合工艺对尾矿进行回收,反浮选尾矿经过脱泥-筛分后再进行螺旋溜槽重选可获得铁品位为65.48%、铁回收率为16.88%的重选精矿,铁品位为30.45%、铁回收率为54.51%的磁选精矿给入反浮选作业;选用NaOH为调整剂、淀粉为抑制剂、CaO为活化剂和LKY为捕收剂,经过一次粗选、两次精选,可获得铁品位65.36%,铁回收率为31.04%的反浮选精矿。最终实现了齐大山反浮选尾矿中铁矿物的有效回收。  相似文献   

16.
某高炉渣综合利用试验研究   总被引:1,自引:0,他引:1  
采用粗碎-干式磁选抛尾-湿式磁选流程对某高炉渣进行了综合回收研究,得到了铁品位为58.18%、铁回收率为42.77%的合格铁精矿;而且干选抛尾尾矿还可以作高炉渣水泥原料或者混凝土混合料,从而实现了高炉渣的综合利用.  相似文献   

17.
高志明  周显瑞 《金属矿山》2017,46(7):186-189
某高炉除尘灰-0.074 mm占70.30%,有价成分为铁、炭、锌,铁在-0.074 mm粒级有明显的富集现象;锌主要分布于-0.065 mm粒级;试样粒度越粗炭分布率越高。试验对该试样进行了选矿试验研究,结果表明,在磨矿细度为-200目占85%的情况下,采用螺旋溜槽粗选、环形摇床精选、螺旋溜槽粗选尾矿筛分工艺处理试样,可获得铁品位达57.40%、回收率达47.08%的铁精粉,固定碳含量达67.18%、回收率达63.09%的炭精粉,以及锌含量为6.04%、回收率达74.47%富锌料。以试验流程为基础建设的生产工艺系统处理铁含量为31.50%、碳含量为25.20%、锌含量为2.46%的高炉除尘灰,在磨矿细度为-200目占85%的情况下,获得的铁精粉铁品位达55.30%、回收率达53.72%;炭精粉固定碳含量达67.81%、回收率达60.76%;富锌料锌含量为5.81%、回收率达74.18%。铁精粉、炭精粉和富锌料品质均满足返厂或作为产品销售的要求。该工艺是高炉除尘灰处理的低成本、高效率工艺,具有较高的推广、应用价值。  相似文献   

18.
系统研究了某高硫铁矿降低铁精矿中硫含量的选别工艺。根据降硫工艺的先后顺序, 采用先磁选再降硫和先降硫再磁选两种工艺流程。先磁选后降硫工艺, 采用再磨磁选和浮选两种方法降硫, 再磨磁选降硫工艺得到铁精矿品位67.08%(含硫0.14%), 回收率91.91%; 浮选降硫工艺得到铁精矿品位64.90%(含硫0.13%), 回收率91.90%。先降硫后磁选工艺得到铁精矿品位63.19%(含硫0.13%), 回收率88.43%。推荐先磁选后降硫工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号