首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 468 毫秒
1.
针对极近距离煤层回采巷道维护困难的问题,结合山西登茂通矿具体地质条件,采用理论计算和UDEC数值模拟相结合的方法,研究了3106工作面回采巷道合理布置及围岩控制,2~#煤残留煤柱下方11m范围内底板应力呈不均匀分布特征,受剧烈的非均布荷载影响下位煤层巷道顶板和巷帮易发生局部过度承载而破坏;距残留煤柱边缘15m范围内的巷道变形破坏具有显著差异性,距残留煤柱中心越近,巷道围岩破坏越严重,稳定性越差,极近距离下位煤层回采巷道布置应避开应力增高区和高水平应力的应力降低区;合适的锚杆(索)支护结构可有效抑制围岩损伤裂隙的增加并使围岩趋于稳定。3106工作面回采巷道实践表明:回采巷道布置在距残留煤柱边缘15m处并采用高强度锚杆(索)关键部位协同支护方案,可减小残留煤柱底板应力影响,有利于保持巷道围岩整体稳定性。  相似文献   

2.
肖丹  车禹恒 《煤矿安全》2018,(2):214-218
为了对煤柱底板应力传递规律进行深入研究,根据弹塑性力学中半平面体理论,建立了煤柱底板传递力学模型,结合应力叠加原理得到煤柱底板应力分布计算公式,并利用Math CAD得到了煤柱底板的垂直应力和水平应力云图。以大同矿区侏罗系煤层为例,分析了不同类型煤柱底板的垂直应力和水平应力的分布特征。分析得到:煤柱的垂直应力的应力量值和影响范围最大,在应力传递的过程中起到了主导作用;边界煤柱底板的垂直应力集中区影响深度范围最大,大区段煤柱(20 m)次之,小区段煤柱(10 m)最小。对煤柱的不同布置方式的底板垂直应力进行了分析,煤柱重叠布置使得底板应力集中区的深度和范围增加。以大同侏罗系煤层群开采为实例,重叠煤柱综合作用下,3-5#煤垂直应力为12.4~17.3 MPa,较无煤柱条件下提高了1.3~6.2MPa。在125~280 m对应的区域垂直应力升高明显,建议3-5#煤层工作面回采巷道布置尽量避开该区域。  相似文献   

3.
近距离煤层综放回采巷道合理位置确定   总被引:1,自引:0,他引:1  
针对近距离煤层开采下部煤层回采巷道布置这一难题,采用理论分析与数值模拟等手段对上位煤层开采后造成的底板破坏深度、残留煤柱在底板的应力分布以及巷道在非均布载荷下易于破坏的原因进行研究。研究表明:煤层开采引起的侧向支承压力对底板造成的最大破坏深度为25.3m,已经波及到下位煤层巷道所在水平;在煤柱两侧边缘出现一定范围的应力降低区,煤柱正下方出现一定范围的应力增高区,煤柱底板的应力分布具有明显的非均匀性;下位煤层巷道在非均布荷载作用下,更易出现局部拉应力过大,从而造成巷道变形破坏。采用主应力改变量Δσ表示应力不均衡程度,考虑最大限度回收资源,结合数值模拟主应力分布特征,确定下位煤层回采巷道布置在距煤柱水平距离14 m。  相似文献   

4.
为研究燕子山矿近距离下部煤层回采巷道的布置,通过理论计算对上部4号煤层4216、4218双侧采空遗留区段煤柱建立力学模型,明晰遗留区段煤柱主应力差在其底板的传递规律;应用FLAC3D数值软件模拟上部区段遗留煤柱在底板不同深度垂直应力、水平应力及主应力差的分布特征,分析了主应力差与应力降低区因素对巷道合理内错距离的影响。结果表明,巷道应布置于低主应力差环境,避开主应力差峰值区域,下煤层水平距离上部煤柱边缘30 m位置时,垂直应力接近原岩应力,平均主应力差值小于1.24 MPa,且主应力差变化率较低;最终确定下煤层工作面回采巷道采用内错30 m布置。现场实践证明,在该错距下巷道围岩变形较小,能够保证矿井安全、高效生产。  相似文献   

5.
近距离煤层群下行开采中,上位煤层开后造成下位煤层采场围岩力学环境发生改变,回采巷道的合理布置是下位煤层安全高效开采的关键。因此,本文以甘沟煤矿为工程背景,采用理论分析、数值计算、现场实测等手段,对上位煤层开采后,残留煤柱对底板影响进行分析。研究结果表明:利用滑移线理论确定B4-2号煤层开采后对底板影响的最大深度为18.7 m,选取内错式布置,内错距不小于6.03 m;采用UDEC数值模拟软件对B4-2煤层的残留煤柱下方底板应力分布规律分析,得到煤柱影响下的底板应力演化特征,煤层开采后残留煤柱造成底板破坏深度达20 m左右,理论部分计算符合;通过对不同内错距下塑性区域分布进行分析,得到内错距为15 m时,对下位煤层的影响最小。  相似文献   

6.
为研究近距离煤层群下行开采下位煤层巷道合理位置,通过建立力学计算模型,推导出底板岩层内应力分量。并结合吴官屯煤业开采实际条件,计算得出上部煤层开采后底板应力状况。结果表明:底板中垂直应力在水平及垂直方向最大影响范围分别达到31m和55m,水平应力在水平及垂直方向最大影响范围分别达到37m和12m,剪切应力在煤柱中心位置下方为0,应力峰值点出现在煤柱边缘,峰值为5.5MPa,该研究可为合理布置下位巷道位置和支护选择提供了依据。  相似文献   

7.
基于极近距离煤层开采条件,应用弹塑性理论及弹性力学理论分别对上位煤层开采后对底板的屈服破坏深度及残留煤柱在底板的应力分布情况进行力学分析计算。通过对煤层塑性煤柱临界宽度的计算,确定上位残留煤柱的稳定性,其在底板的非均布应力对下位回采巷道的合理布置至关重要。经过综合分析确定出下位回采巷道合理的内错距,此方法可为极近距离煤层开采回采巷道的合理位置的确定提供一定的参考。  相似文献   

8.
近距离煤层群开采中,由于下位煤层受上位煤层采动影响致使煤层开采中呈现特殊的矿山压力显现.如何安全有效地布置下位煤层巷道不仅是确保工作面安全高效开采的关键,更是提高煤矿效益的核心.针对国投塔山煤矿上位煤层开采残留煤柱下特厚煤层回采巷道合理布置难题,本文采用理论分析、实验室试验及数值模拟等综合研究方法对下位煤层巷道合理布置位置进行分析,得到以下结论:通过力学测试得到巷道顶底板煤岩体物理力学参数,为理论分析及数值模拟提供了强有力的数据支持;通过理论分析及数值模拟计算,研究了残留煤柱载荷作用下底板煤岩体中的非均匀应力分布规律;通过分析下位煤层回采巷道合理布置方案,确定下位3—5号特厚煤层巷道布置采用内错距25m的方式为最佳布置方式.  相似文献   

9.
复杂特厚煤层综放工作面煤柱应力分布规律研究   总被引:1,自引:0,他引:1  
为了掌握塔山煤矿3-5号煤层综放面煤柱应力分布及巷道变形规律,在深入调研目前煤柱压力显现情况的基础上,通过在2个综采放顶煤工作面回风巷布置应力观测区,在测区内安装GYW25型钻孔应力传感器和KJ216-F2本安型监测分站,动态监测煤柱内应力变化,同时进行了巷道围岩变形观测。观测分析结果表明:在8208工作面回采期间,煤柱应力波动较大,峰值位置位于距8210工作面一侧25 m,距8208工作面一侧13 m附近;在留设38 m区段煤柱的情况下,8208工作面前方100 m范围内回风巷顶底板累计移近量达到1 000~1 400 mm,两帮达到600~1 000 mm;在回采与掘巷相向施工条件下,38 m煤柱是安全的、合理的;从8210工作面回风巷煤柱应力峰值位置分析,可以将煤柱减小到30~35 m。  相似文献   

10.
《煤炭技术》2017,(12):71-73
针对4-2煤层回采巷道布置这一难题,采用理论分析与数值模拟的方法分析了残留24 m煤柱的稳定性及其在底板的应力传递规律。研究表明:因4-1煤和4-2煤相距极近且24 m煤柱承受较大集中应力,故在煤柱下方3 m的水平截面上,处于煤柱正下方的垂直应力较大,应把4203主运顺槽布置在水平方向远离煤柱的应力降低区,即距煤柱中心线18 m的位置;最后,考虑支承压力传递影响角,确定4203主运顺槽巷帮距4-1煤煤柱边缘的距离为6 m,并经回采实践证明了回采巷道布置方式的合理性。  相似文献   

11.
为了确定近距离煤层回采巷道合理位置,采用物理力学参数试验分析巷道围岩特性,得到了煤、直接顶、直接底的工作面围岩强度参数。基于此,进行了理论分析、数值模拟和现场试验,研究了近距离煤层回采巷道合理位置。研究得出,根据数值模拟和理论分析,将己16-17-31020运输巷布置方式确定为外错式;把己16-17-31020运输巷布置在己15-31040采空区的下方,其巷道距上覆遗留煤柱边缘水平距离为25 m。顶板采用高强度预应力锚杆和高强度高预紧力锚索,帮部锚杆采用高强度预应力锚杆,对其进行围岩变形量观测和顶板离层监测。巷道顶底板最大移近量为57 mm,两帮最大收敛量为104 mm;巷道深部最大离层量为11 mm,浅部最大离层量为10 mm。在大平距外错的布置方式下,巷道的支护难度低、应力环境小、控制效果好。研究有效解决了巷道大变形、高应力问题。  相似文献   

12.
刘爱卿 《中州煤炭》2018,(5):175-179
针对近距离煤层中上部煤层开采容易引起下部煤层应力环境复杂化而导致巷道难以维护的问题,采用数值计算的方式分析了近距离煤层的煤柱宽度、埋深、层间距等因素对下部煤层应力分布的影响。研究得出:随着煤柱宽度增加,上部煤柱底板附近应力呈降低趋势,但应力衰减速度和下部煤层应力增高区范围呈增加趋势;随着埋深增加,上部煤柱底板岩层应力和传递深度呈现增加态势,但下部煤层应力增高区扩散范围逐渐减小;层间距的变化对于上部煤柱底板岩层的应力传递影响较小,但下部煤层应力增高区扩散范围增大,且增加幅度高;当采空区顶板能够及时垮落时,工作面长度变化对于上部煤柱底板附近岩层应力分布影响并不明显,但使得采空区下方低应力区范围扩大,有利于下部煤层巷道布置位置选择。  相似文献   

13.
陈跃朋 《中州煤炭》2018,(3):164-169
确定巷间煤柱合理尺寸是保证留底煤掘进双巷布置大采高工作面安全、高产与高效的关键所在。以某矿122106大采高工作面沿底掘进胶运巷和辅运巷之间的护巷煤柱为工程背景,对工作面生产地质条件展开现场调研,同时原位测试巷道围岩地质力学参数。基于上述原始数据理论,估算出煤柱极限强度与合理的煤柱宽度范围,通过数值试验研究手段,分析初步选定宽度煤柱条件下,二次回采阶段巷道围岩及煤柱内部应力、位移和塑性破坏特征。结果表明:煤柱的极限强度为50.48 MPa,合理的煤柱宽度为19.24~29.28 m。煤柱宽度20 m时,煤柱内塑性区是2个独立的区域;当煤柱宽度达到一定程度后,接续面回采对上个工作面侧煤柱应力影响较小,主要是对本侧煤柱影响较大;靠近煤柱侧顶板和帮部变形较大,垂直位移最大值集中在巷道肩角位置,顶板出现不均匀下沉;煤柱核区内垂直应力均小于其极限强度,能保证稳定;煤柱最大垂直应力集中在两侧,靠近采空区的位置,煤柱中部存在较明显的应力下降区域。  相似文献   

14.
深部高应力区段煤柱留设合理性及综合卸荷技术   总被引:1,自引:0,他引:1       下载免费PDF全文
祁和刚  于健浩 《煤炭学报》2018,43(12):3257-3264
为避免深部矿井高应力煤柱对巷道产生的不利影响,基于塑性滑移场理论、极限平衡理论,结合数值模拟方法,以葫芦素矿井2-1煤首采区为背景,研究区段煤柱集中载荷作用下底板承压破坏范围及其对巷道围岩稳定性的影响程度。结果表明:目前葫芦素2-1煤留设的30 m区段煤柱在侧向支承压力作用下对底板岩层的影响较大,其承压破坏带覆盖整个巷道底板范围,造成巷道底臌严重。为此,提出了“一高一低”的高应力区段煤柱综合卸荷技术,即高位“钻、切、压”一体化技术切断覆岩应力传递,低位煤层小孔径爆破技术释放煤柱内的集聚载荷。现场实验结果表明:卸荷后煤柱内部应力峰值由22.5 MPa降至15.7 MPa,压降明显,巷道变形得到有效控制。  相似文献   

15.
王正帅  刘军 《中州煤炭》2021,(11):294-298
为了研究大倾角煤层综采面回采对区段煤柱和下区段工作面回风巷掘进面的影响,采用数值模拟和现场监测的方法研究了区段煤柱的应力分布、回采面对掘进面的扰动情况。研究结果表明,大倾角煤层工作面应力集中区域与缓倾斜煤层明显不同,煤柱受到的工作面与煤柱侧叠加应力并非均匀分布,靠近上区段侧的应力集中明显高于下区段侧;当前南山煤矿B8煤层大倾角工作面20 m宽区段煤柱能够保持稳定,通过弹性核理论计算其合理区段煤柱宽度为18.4 m;回采工作面与相邻掘进工作面相距218 m时开始相互扰动,两面之间的最大扰动影响发生在回采面越过掘进面46 m时。  相似文献   

16.
基于天安煤业股份有限公司四矿己15、己16-17极近距离煤层群的地质条件和己16-23090工作面与上覆己15-23110采空区、相邻己16-23070采空区、己15-23130生产工作面的空间关系,采用理论分析和数值模拟的方法,系统研究了已开采工作面和正在开采工作面的对下伏近距离煤层的采动应力分布及传递规律,从而明确了矿压显现规律,得出了将己16-23090运输巷的位置布置在距己15-23130回风巷35 m较为合理,为实现“一巷多用”提供了依据。  相似文献   

17.
针对近距离煤层群开采中存在开采中受多重动压影响,煤柱留设、巷道布置随意性强、缺少有效支护方式等问题,以己16-17-23140运输巷为例,采用理论分析、数值模拟方法,研究了近距离上位煤层开采底板破坏规律,分析得出了侧向支承压力峰值随着与煤壁距离增大快速达到载荷峰值,得出侧向支承压力集度计算公式;计算得出平煤股份四矿己15煤层开采后的底板最大损伤破坏深度为30 m,利用FLAC3D数值模拟软件模拟分析了上位煤层开采下伏煤岩体应力变化规律,随着垂直距离增加,支撑载荷集中系数慢慢减小。研究对矿井下分层全锚支护具有参考价值。  相似文献   

18.
为了有效测定厚煤层工作面的煤柱合理宽度,针对1208工作面生产地质条件,采用理论计算和数值模拟相结合的方法,对合理的煤柱宽度进行了研究。通过理论计算,初步确定了区段煤柱留设25 m,运用数值模拟分析了区段煤柱内应力分布规律,在煤柱宽度在15~22 m时,应力值处于“谷底”,且处于弹性区。现场应用表明,巷道顶底板移近量最大为169 mm,两帮移近量最大为383 mm,巷道维护效果好,煤柱稳定。研究成果可为该矿后续的工作面区段煤柱尺寸留设提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号