首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为实现钢铁企业含锌冶金尘泥低碳环保高效的资源化利用,对铁含量为30.38%、锌含量为4.79%的含锌冶金尘泥进行还原焙烧-磁选分离研究。试验结果表明,该含锌冶金尘泥直接磁选难以实现锌铁有效分离,在焙烧温度950 ℃、焙烧时间20 min、磁选强度100 mT等条件下,磁选精矿铁回收率为79.50%、铁含量为57.00%、锌含量为2.45%,磁选尾矿锌回收率为71.06%、锌含量为9.92%、铁含量为16.81%,锌铁分离效果较好。磁选产物中精矿主要以单质Fe为主,尾矿主要由SiO2与ZnO等物相组成。  相似文献   

2.
钢铁企业排放的含铁尘泥是重要的二次资源.为了从中回收铁,本文对两种含铁尘泥瓦斯灰和转炉红尘进行了"混合磁化焙烧-弱磁选"试验研究.确定了最优的工艺条件为:焙烧温度750℃、焙烧时间60min、激磁电流1.0A、磨矿细度-200目占90%.在此条件下,获得了铁品位60.4%和回收率88.6%的铁精矿.  相似文献   

3.
攀钢高炉瓦斯泥的综合利用   总被引:1,自引:3,他引:1  
高炉瓦斯泥中含有大量的铁,如能回收则是很好的炼铁原料。本文针对攀钢高炉瓦斯泥含铁率较低、含锌率较高的特点进行了磁选、重选、浮选探索试验,最终确定采用重—浮联合的最佳工艺流程,获得铁品位47.20%、回收率49.24%的铁精矿,并使锌集中到尾矿中,以利于锌的回收。  相似文献   

4.
对含铁品位为37.89%的武钢高炉瓦斯泥,进行理化性能分析和矿物工艺学研究,采用磁选、重选(摇床、螺旋溜槽)等方法进行铁矿物回收,试验研究表明,采用两段重选工艺流程处理武钢高炉瓦斯泥,可获得精泥产率31.81%、含铁品位61.51%、铁回收率51.64%较理想指标,其中SiO2、Al2O3、CaO、MgO的含量都能满足高炉冶炼的要求。试验采用的重选工艺回收铁,对瓦斯泥的适应性强,便于生产操作和管理。   相似文献   

5.
氧化铝工业含铁赤泥制备DRI技术研究   总被引:1,自引:0,他引:1  
利用氧化铝溶出废弃贫铁矿泥,配入自制添加剂,采用煤基直接还原焙烧一渣铁磁选分离一冷固成型的新工艺流程,通过X-ray,SEM-EDS手段,研究了国外铝土矿溶出废弃含铁矿泥煤基直接还原过程中金属铁晶粒长大特性,并着重讨论了添加剂种类、焙烧条件对金属铁晶粒长大特性的影响,生产出优质的海绵铁,其金属化率为92.9%,含铁品位为93.7%,铁回收率为94.42%。为氧化铝工业废弃贫铁矿泥综合利用开辟了道路。  相似文献   

6.
基于直接还原法探讨了焙烧制度对煤泥-浸锌渣冷固结球团中锌、铅挥发率和铁金属化率的影响,分析了焙烧制度对球团中含锌、铅、铁化合物相变的影响,试验确定了焙砂磨矿-弱磁选回收其中铁的工艺和效果。结果表明:在1 250 ℃焙烧90 min,可使球团中锌、铅的挥发率分别达到98.87%、95.39%,铁的金属化率达到98.66%;焙砂中未见锌、铅单质及其化合物,只存在大量的金属铁,且金属铁颗粒多数大于30 μm;焙砂采用2段磨矿、2段弱磁选流程处理,可同时获得含铁91.20%、回收率为30.32%的金属铁粉和铁品位为61.58%、回收率为50.01%的铁精矿,铁总回收率达80.33%。  相似文献   

7.
针对含锌、铁氧化矿石,采用浮选、磁选、重选等常规选矿方法,碱性浸出、硫酸浸出等常规浸出方法,常规还原焙烧-磁选以及深度还原-磁选等方法,考察了相关因素对锌、铁回收的影响。研究结果表明,浮选、磁选、重选等常规选矿方法,碱性浸出、硫酸浸出等常规浸出方法以及常规还原焙烧-磁选方法均不能使锌、铁有效富集,而采用深度还原-磁选方法,获得的铁精矿铁品位与铁回收率均在90%以上,金属化率在92%以上,锌挥发率在97%以上,实现了锌、铁综合回收。  相似文献   

8.
河北某锌原矿含铁9.45%,其中磁性铁占总铁的61.48%,在锌优先浮选后,为高效回收浮锌尾矿中的铁资源,通过矿石性质分析,决定采用1次磁选—精矿再磨—2次磁选的工艺流程回收,最终获得了铁品位为63.17%、铁回收率为65.66%的铁精矿,对其他同类矿山具有参考借鉴意义。  相似文献   

9.
对某含铁品位46.72%的氯化挥发渣进行了直接还原焙烧-磁选回收铁的研究。还原剂烟煤用量、活性石灰用量、焙烧温度、焙烧时间和磨矿细度是影响铁回收的主要因素。在氯化挥发渣、烟煤和活性石灰质量比100∶25∶10、还原温度1150℃、焙烧时间55min、一段磨矿细度-0.074mm 85%、二段磨矿细度-0.043mm 90%最佳条件下,获得了产率43.59%、铁品位91.20%、硫含量0.05%、磷含量0.03%、铁回收率85.18%的还原铁。  相似文献   

10.
用选矿方法从高炉瓦斯泥中回收铁精矿的研究   总被引:2,自引:0,他引:2  
宣守蓉  于留春 《金属矿山》2007,37(11):123-127
介绍了梅山高炉瓦斯泥的性质、试验情况及结果,国内外处理使用含锌高炉瓦斯泥的方法。根据其性质,用选矿方法对高炉瓦斯泥进行了收铁降锌的试验研究。结果表明,无论用弱磁选还是强磁选均能从中回收大部分铁矿物并去除大部分锌,将高锌、低锌物料进行有效分离,铁精矿产率和品位均达到52.00%以上,铁金属回收率70.00%,脱锌率50.00%以上,使除锌后的瓦斯泥可继续作炼铁原料使用。  相似文献   

11.
以煤粉作还原剂, 采用焙烧-浸出-磁选工艺对某铜渣中的铁进行了回收实验研究。探讨了焙烧温度、焙烧时间、煤粉用量、碳酸钠用量等因素对铁回收的影响, 最佳工艺条件为: 焙烧温度800 ℃, 焙烧时间60 min, 煤粉用量1%, 碳酸钠用量10%, 在此条件下获得的焙砂经进一步稀酸浸出和磁选, 可获得铁品位62.53%、铁回收率70.82%的铁精矿。  相似文献   

12.
采用兰炭作还原剂,对高炉粉尘进行还原焙烧,再对焙砂进行磁选,然后浸出磁选尾矿中的锌,实现锌、铁分离。在热力学计算的基础上,研究了焙烧条件对锌、铁浸出率的影响,结果表明:加碳焙烧可使高炉粉尘中的铁酸锌选择性还原为磁性氧化铁和氧化锌,较优的焙烧工艺参数为:焙烧温度800 ℃,焙烧时间2 h,配炭量50%。磁选可分离出焙砂中的磁性氧化铁。采用1 mol/L的硫酸在室温下浸出磁选尾矿1 h,锌、铁浸出率分别为75.39%和27.46%。  相似文献   

13.
胡芳  陈泽宗 《矿冶工程》2021,41(6):81-83
对铁品位42.36%的某微细粒难选铁矿尾矿进行了选矿工艺研究,制定了磁化焙烧-弱磁选的选矿工艺流程,并研究了配煤量、焙烧温度、焙烧时间和磨矿细度等试验条件对铁回收效果的影响。结果表明,在配煤量5%、焙烧温度800 ℃、焙烧时间30 min的适宜试验条件下焙烧,所得焙烧矿磨至-0.074 mm粒级占75.83%后,经一粗一精弱磁选(磁场强度均为96 kA/m),可获得铁品位56.84%、回收率73.74%的铁精矿。  相似文献   

14.
针对含铅0.39%、含锌0.30%的铁矿,采用碳热还原脱除铅锌杂质,利用X射线衍射、扫描电子显微镜及能谱分析等检测手段考察了铁矿还原焙烧过程的反应行为及物相演变规律。结果表明,该铁矿中铅主要以氧化铅和铅铁矾形式存在,锌主要以氧化锌形式存在; 升高焙烧温度及延长焙烧时间均有利于铅锌脱除; 在1 200 ℃下焙烧60 min时,铁矿中铅和锌脱除率均在90%以上。含铅锌铁矿在碳热还原焙烧过程中会生成中间产物铁橄榄石,并最终转变为金属铁和游离的氧化硅固溶体。还原焙烧产物经磁场强度80 kA/m弱磁选可获得铁品位91.91%和铁回收率84.78%的铁精矿,且铁精矿中铅和锌含量分别为0.01%和0.03%,可作为电炉炼钢原料使用。  相似文献   

15.
酒钢镜铁山铁矿石直接还原-磁选试验研究   总被引:1,自引:1,他引:0  
以高炉除尘灰为直接还原剂, 针对镜铁山式难选铁矿石进行了直接还原-磁选试验研究。结果表明, 高炉除尘灰有较好的还原效果, 在配比为30%、焙烧温度为1 200 ℃、焙烧时间为60 min的条件下, 可以获得铁品位93.45%、铁总回收率为87.14%的还原铁粉。研究表明, 酒钢镜铁山矿直接还原制备还原铁粉是可行性的, 同时为高炉除尘灰的开发利用找到了一个新的途径。  相似文献   

16.
针对某含铁赤泥样品, 在工艺矿物学研究基础上, 进行了强磁选预富集-闪速磁化焙烧-磨矿-弱磁选扩大连续试验研究。工艺矿物学研究结果表明, 试样中铁品位26.06%, 是主要的回收组分, 其中呈赤(褐)铁矿形式产出的铁占96.85%, 磁化焙烧是选铁的有效途径。闪速磁化焙烧矿XRD分析和MLA分析检测结果表明, 反应炉入口温度740~760 ℃、烟气中CO含量1.8%~2.2%条件下获得的焙烧矿中铁矿物主要为磁铁矿, 矿样磁化效果较为理想。焙烧矿经磨矿-弱磁选工艺处理, 可获得铁精矿产率58.35%、TFe品位 60.15%、铁回收率82.08%的选别指标。  相似文献   

17.
赵海涛  张志雄 《矿冶工程》2012,(3):64-66,70
采用焙烧-磁选方法对新疆克州建宝选矿厂回转窑窑尾除尘灰进行了回收铁的试验研究。考察了焙烧温度、焙烧时间、磨矿粒度、磁场强度等因素对选铁效果的影响,并比较了直接焙烧和造球焙烧效果的差异。结果表明,除尘灰经720℃/30 min、760℃/30 min或800℃/20 min焙烧,在磁场强度为0.18 T条件下进行分选,获得的铁精矿品位57%以上,精矿铁回收率90%左右,铁精矿中杂质含量S、P低,符合铁精矿要求。除尘灰直接焙烧或造球焙烧后磁选所得铁精矿品位和回收率差异不大,考虑动态回转窑处理该矿,在粉矿中添加一定量的膨润土较大地提高了造球强度,在不影响指标的情况下,可满足回转窑的生产要求。  相似文献   

18.
硫酸渣是一种大宗固体工业废弃物,铁含量较高,含量偏高的铅、锌往往是制约其作为铁资源利用的重要因素。氯化焙烧-磁化焙烧-磁选工艺则可成功脱除铅、锌,获得高铁低铅锌铁精矿。为揭示硫酸渣氯化焙烧过程中各主要相态的铅、锌发生氯化反应的限制环节,以及氯化反应的速率和氯化焙烧机理,以CaCl2为氯化剂,对某硫酸渣进行了氯化焙烧动力学研究。结果表明:①铁、铅、锌含量分别为49.90%、0.29%和1.23%,锌绝大部分为氧化态,铅主要为氧化态,其次是硫酸铅和其他形态铅,在CaCl2与硫酸渣的质量比为6%的情况下,延长氯化焙烧时间或提高焙烧温度,锌、铅的氯化挥发脱除率均上升,1 000 ℃时焙烧5 min,锌、铅的脱除率分别达86.99%和83.14%,为后续磁化焙烧-磁选制备高铁低杂铁精矿创造了良好的条件。②相比较而言,氯化焙烧脱锌比脱铅更容易。③900~1 050 ℃时锌氯化挥发的表观活化能为42.07×103 J/mol,受化学反应控制;900~950 ℃时铅氯化挥发的表观活化能为43.88×103 J/mol,受化学反应控制;1 000~1 050 ℃时铅氯化挥发的表观活化能为20.34×103 J/mol,受扩散控制。④强化铅、锌的氯化挥发脱除,除了提高温度,还可通过增加固体氯化剂用量或提高硫酸渣固体颗粒的孔隙率和比表面积来实现。  相似文献   

19.
唐立靖  唐云  梁居明 《矿冶工程》2015,35(2):117-119
针对某高铝高硅难选褐铁矿(Al2O3含量26.11%、SiO2含量13.88%)进行了钠化焙烧-磁选试验研究。通过单因素试验和正交试验探讨了钠盐种类、钠盐用量、焙烧时间、焙烧温度、磁选粒度、磁选强度对选别指标的影响, 结果表明, 在焙烧温度1 050 ℃、焙烧时间40 min、Na2CO3用量12%、煤粉用量20%、磨矿细度-0.038 mm粒级占98.86%、磁场强度200 kA/m条件下可获得铁品位57.91%、铁回收率97.50%的铁精矿。钠化焙烧后产品再经阶段磨矿、阶段磁选可获得铁品位62.04%、铁回收率60.90%的铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号