首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
四川某钒钛磁铁矿选铁尾矿选钛试验研究   总被引:1,自引:0,他引:1  
某钒钛磁铁矿选铁尾矿含TiO213.93%,矿石属于高钛型钒钛磁铁矿,矿石组成复杂,金属矿物主要为钛铁矿、钛磁铁矿,脉石矿物主要为辉石、斜长石和橄榄石。针对该选铁尾矿性质,采用强磁选—浮选联合工艺流程,经强磁抛尾作业后,强磁精矿作为浮选物料经一粗三精三扫作业,最终可获得TiO2品位48.87%、浮选作业回收率85.51%(对选铁尾矿回收率68.97%)的合格钛精矿,选钛技术指标较好,实现了该矿综合回收利用。  相似文献   

2.
某超低品位钒钛磁铁矿选铁尾矿TiO_2品位极低,仅为3.33%,可回收金属矿物为钛铁矿,主要脉石矿物为橄榄石、辉石、长石和角闪石;品位低、橄榄石含量高是该矿石的两大特点,如何高效预富集及分选成为制约其开发利用的关键因素。针对选铁尾矿性质,采用强磁抛尾—强磁精矿再磨—摇床富集联合预选工艺可将TiO_2品位由3.33%提升至29.19%,作业回收率50.12%;预选精矿进一步浮选可获得TiO_2品位45.80%、浮选作业回收率为76.68%的钛精矿产品,对选铁尾矿TiO_2回收率达到38.43%,通过联合工艺使超低品位钒钛磁铁矿具备经济利用价值。  相似文献   

3.
某钒钛磁铁矿含TFe16.43%、TiO_2 4.70%,属表外矿。矿石组成复杂,金属矿物主要为钛铁矿、钛磁铁矿,脉石矿物主要为辉石、斜长石、角闪石和橄榄石。针对矿石性质,采用预分选-阶段磨选流程选钛,获得了TFe品位57.58%,TFe回收率60.42%的铁精矿产品;选铁尾矿采用强磁-浮选流程选钛,获得了TiO_2 品位46.23%,浮选作业回收率71.24%的钛精矿产品,实现了原矿中铁、钛的较好回收。  相似文献   

4.
红格某钒钛磁铁矿中橄榄石和其蚀变矿物的含量较高,矿石的结构构造和矿物嵌布特征较复杂,矿物种类繁多,钛磁铁矿和钛铁矿的嵌布粒度粗细不均,由于橄榄石比磁化系数比其他脉石高,可浮性也比其他脉石好,选矿难度很大。针对该矿石特点,选铁过程中重点考虑如何确定经济合理的抛尾粒度,最大限度地多碎少磨,降低生产成本;选钛过程中重点研究一种能较好处理含橄榄石较多的钛铁矿浮选工艺流程和药剂制度,将橄榄石和它蚀变的矿物对钛铁矿浮选的影响减至最小,最终采用"原矿粗粒抛尾-阶磨阶选(选铁)-强磁预选-浮选(选钴、钛)"的工艺流程进行试验并取得了良好的试验室指标,结果为:铁精矿品位56.23%、回收率64.94%,钛精矿品位46.38%、回收率20.13%。试验成果为评价该铁矿资源开发利用的可行性提供了选矿技术支持。  相似文献   

5.
某低品位钛铁矿TFe含量为10.20%、TiO2品位为4.55%,属于低铁低钛等级矿石。矿石成分简单,主要工业矿物为钛铁矿和磁铁矿,主要脉石矿物为角闪石、长石。针对该矿石,首先进行了重磁拉抛尾,获得了TFe含量为12.31%,TiO2品位为5.81%的抛尾粗精矿;抛尾粗精矿经磨矿—选铁处理后,采用"螺旋溜槽+干式磁选"工艺,获得了TiO2品位为46.17%的钛精矿产品,回收率为46.72%。实现了矿石中铁、钛矿物的高效回收。  相似文献   

6.
低品位钒钛磁铁矿选铁尾矿综合回收钛试验研究   总被引:8,自引:0,他引:8  
针对低品位钒钛磁铁矿选铁尾矿含钛低、含橄榄石和钛普通辉石高、矿石工艺性质复杂难选的特点,开展了综合回收钛的试验研究。研究结果表明:采用强磁预选-浮选工艺,可以获得含TiO248.01%、回收率36.40%(对选铁尾矿)的较高质量的钛精矿产品。  相似文献   

7.
攀西某钒钛磁铁矿选铁尾矿TiO_2含量为8.61%,主要金属矿物为钛铁矿、磁黄铁矿和黄铁矿,主要脉石矿物为普通辉石、橄榄石、普通角闪石和绿泥石。矿石组成复杂,橄榄石含量高。针对选铁尾矿性质,采用强磁-浮选流程选钛,选铁尾矿经过强磁选预选后TiO_2品位由8.61%提升至15.96%,强磁作业回收率77.93%;浮选采用自行研制的调整剂EMZT-01配合硫酸和草酸使用,以EMZB-01作为浮钛捕收剂配合中性油煤油强化捕收,以一粗一扫四次精选的工艺流程获得了较好的试验指标。小型试验获得了TiO_2品位47.78%、浮选作业回收率为61.25%的钛精矿产品,对选铁尾矿TiO_2回收率达到47.73%。  相似文献   

8.
钛磁铁矿对钛铁矿浮选的影响   总被引:4,自引:0,他引:4  
钛磁铁矿对钛铁矿的浮选会产生非常不利的影响。单矿物研究结果表明:钛磁铁矿具有比钛铁矿更好的可浮性,浮选中会优先进入精矿,影响精矿品位,并增加药剂消耗;钛磁铁矿易产生磁团聚现象,造成机械夹带,包裹脉石的钛磁铁矿磁团聚体进入浮选精矿中会降低精矿品位和回收率。钒钛磁铁矿选铁尾矿实际矿样的试验结果表明:不除铁直接浮选钛时,精矿TiO2品位为44.02%,回收率为44.38%;而先经弱磁选除去钛磁铁矿后,采用相同的浮选流程和药剂制度,浮选精矿的TiO2品位提高到47.40%,回收率提高到52.64%。  相似文献   

9.
对云南某钛铁矿进行了工艺矿物学研究。结果表明: 矿石中钛品位为5.62%,主要有用金属矿物为钛铁矿和钒钛磁铁矿,分别占总钛的61.39%和11.03%。脉石矿物主要是斜长石和钛辉石,脉石矿物中主要成分为SiO2和Al2O3,其含量分别为42.35%和12.53%。矿样中粗粒钛铁矿多与钒钛磁铁矿和榍石及硅酸盐紧密共生,其集合体的粒度主要集中在 0.02~0.30 mm。赋存于榍石与硅酸盐矿物中的钛多达27.58%。探索性实验结果表明:弱磁-强磁选可以有效地回收矿石中的强磁性矿物,并抛出大量的脉石矿物,实现钛铁矿的富集。因此,该矿石属于低品位难选钛铁矿,实现钛铁矿物的有效回收对该资源的开发利用具有重要的实践意义。   相似文献   

10.
某地难选钛中矿选矿工艺研究   总被引:1,自引:1,他引:0  
某地钛中矿物组成复杂,且粒度分布粗细不均,少量已赤铁矿化、褐铁矿化,并且部分钛磁铁矿磁性、可浮性与钛铁矿相似,属较难分选矿物。针对该矿石性质进行了多种选矿工艺试验研究,确定了弱磁脱除部分磁铁矿、强磁预抛尾、重选与浮选联合处理磁选粗精矿的磁选—重选—浮选联合选矿流程。浮选是回收细粒级钛铁矿的有效方法。增加浮选流程可提高钛精矿中Ti O_2回收率13%,而Ti O_2品位基本不变。在获得最佳浮选条件的基础上,进行了全流程闭路试验,获得了Ti O_2品位47.11%、回收率69.88%的钛精矿,为当地钛矿物的有效回收提供了技术依据。  相似文献   

11.
针对辽西风化壳型钒钛磁铁矿有用矿物难以回收利用的问题,进行了详细的工艺矿物学研究。矿石中金属矿物主要为磁铁矿、(钛)磁铁矿、钒磁铁矿、钛铁矿,非金属矿主要有长石、角闪石和石英。其中钛、钒主要以类质同象的形式赋存在磁铁矿中,且矿石中磁铁矿、钛铁矿及脉石矿物嵌布关系复杂,解离困难。分别采用直接磨矿-弱磁选预富集、粗粒干式预抛尾-磨矿-弱磁选预富集、粗粒湿式预抛尾-磨矿-弱磁选预富集工艺进行了预富集工艺对比试验。结果表明,粗粒湿式预抛尾-磨矿-弱磁选无论在功耗还是回收率指标方面均优于其余2种工艺。采用该工艺在磨矿细度为-0.074 mm占70%条件下,获得了V2O5含量为1.561%、回收率为60.96%,TFe品位为40.43%、回收率为24.83%的预富集精矿,可以满足后续直接酸浸提钒的工艺要求。对粗粒湿式预抛尾-磨矿-弱磁选工艺获得的精矿、尾矿进行分析检测表明,钒、钛以类质同象的形式替换磁铁矿中的铁,使预富集精矿铁品位较低,预富集精矿中磁铁矿、钛磁铁矿、脉石矿物嵌布关系复杂紧密,无法通过机械磨矿使其解离。因此,即使继续增加磨矿细度,预富集精矿全铁品位也仅能保持在40%左右,不能再继续提高。  相似文献   

12.
李韦韦 《现代矿业》2020,36(7):111-115
加拿大某钒钛磁铁矿石Fe品位为4256%,TiO2品位为1065%,V2O5品位为033%,Cr2O3品位为122%,矿石中的金属矿物主要为钛磁铁矿和钛铁矿,绝大部分有用元素赋存在钛磁铁矿中。为确定该矿石的开发利用工艺,进行了选矿试验。结果表明:采用两阶段磨矿阶段弱磁选工艺,可获得Fe、TiO2、V2O5、Cr2O3品位分别为5276%、1021%、042%、164%,回收率分别为8714%、6738%、8945%、9391%的铁精矿;弱磁选铁尾矿采用强磁选+重选选钛流程,可获得TiO2品位为4703%的钛精矿,相对弱磁选铁尾矿的回收率为734%。  相似文献   

13.
攀西地区是我国最大的钒钛磁铁矿产区,钒钛磁铁矿石中除了主要元素铁、钒、钛以外,还伴生有硫资源储量6 000万t、钴资源储量90万t,具有很高的工业利用价值。当前攀钢矿业公司选矿厂对钒钛磁铁矿的选矿工艺流程是“阶段磨矿—弱磁选铁—选铁尾矿强磁选钛—强磁选钛粗精矿浮选脱硫—浮选钛铁矿”得到铁精矿、钛精矿和硫(钴)精矿,仅在钛精矿浮选脱硫阶段浮选回收得到硫(钴)精矿,因为钴品位<0.3%,钴市场价格高时作为硫钴精矿销售,钴市场价格低时只能作为硫精矿销售,造成了钴资源的浪费。开展了弱磁选工序前浮选回收硫钴的试验研究,目标是硫化矿物的早收快收集中收。实验室在磨矿细度-0.074 mm占45%,硫酸铜用量250 g/t、异戊黄药用量150 g/t、3#起泡剂用量30 g/t,一段浮选得到产率14.33%,硫品位3.11%、钴品位0.06%、镍品位0.03%、铜品位0.10%,硫回收率68.14%、钴回收率35.12%、镍回收率47.23%、铜回收率43.12%的粗硫钴精矿。探讨了实验室球磨机磨矿浮选一体机和浅槽快速浮选机,并开展了验证试验,认为浅槽快速浮选机是研究发展方向。  相似文献   

14.
甘肃某含钪低品位钛铁矿石Fe、TiO2、Sc2O3含量分别为10.20%、4.55%和55.6 g/t,磁性铁仅占总铁的17.90%,钛铁矿形式的铁占总铁的22.02%,硅酸盐形式的铁占总铁的52.05%;钛铁矿形式的钛占总钛的69.01%,钛磁铁矿中钛占总钛量的3.52%,其余的钛主要赋存在难以富集和回收的硅酸盐矿物中。磁铁矿嵌布粒度主要为0.5~0.04 mm,钛铁矿嵌布粒度主要为1~0.07 mm,二者嵌布关系密切,混杂充填在硅酸盐矿物粒间,钪主要以类质同象形式存在于深色钙镁酸盐类矿物(主要为角闪石)中。为了确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,6~0 mm矿石经重磁拉选矿机预选抛出29.82%的含泥粗粒尾矿后,在阶段磨选情况下(二段磨矿细度为-0.074 mm占81%),采用1粗(135.4 kA/m)2精(119.4 kA/m和119.4 kA/m)弱磁选流程选铁,选铁尾矿采用1粗(0.7 T)1精(0.6 T)高梯度强磁选流程预富集钛,强磁选钛精矿经1粗1扫4精、中矿顺序返回流程选钛,最终获得Fe品位为60.78%、Fe回收率为13.11%的铁精矿,TiO2品位为47.05%、TiO2回收率为55.74%的钛精矿和Sc2O3品位为99.0 g/t、Sc2O3回收率为48.68%钪精矿。  相似文献   

15.
针对陕西汉中某地钒钛磁铁矿金属化球团,采用锥形球磨机为湿法磨矿设备,研究了磨矿碱度对铁粉再氧化的抑制规律,考察了磁选工艺参数对磁选分离效果的影响,并采用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对产物进行分析表征。结果表明,随着磨矿时间延长,矿粉颗粒逐渐降低,均匀度增大,矿物解离度提高;矿粉铁品位随着磨矿碱度提高呈现先增大后降低的趋势,在p H值为13时达59.3%。磨矿粒度-74μm为95.2%,磁选强度60 m T时获得较好的磁选效果,所得磁性精矿产物中铁品位84.9%,钒钛品位分别为0.52%和3.54%,有效实现了铁与钒钛的分离。磁性精矿产物中主要以金属铁为主,非磁性产物中主要由Fe_3Ti_3O_(10)、Fe VO_4、Ca Ti Si O_5、Mg_(1.2)Ti_(1.8)O_5等物相组成。  相似文献   

16.
由于马拉维钛铁矿资源中铁和钛矿物关系复杂,用常规的重选、磁选和电选方法难以直接分离,不能选出合格的钛精矿,仅能获得低品级的钛粗精矿.本研究用MLA(矿物定量自动检测系统)和SEM(扫描电镜)等测试手段对钛粗精矿进行了工艺矿物学研究,研究结果表明,该钛粗精矿中钛赤铁矿和赤铁矿合计含量为16.33%,钛铁矿含量为79.49...  相似文献   

17.
祝勇涛 《现代矿业》2020,36(3):127-129
为回收利用攀西某选铁尾矿中的钛铁资源,针对该矿矿石性质进行了两段强磁+浮选和隔渣+两段强磁+浮选两种方案的工艺试验对比研究,两种流程开路浮选试验均可获得TiO2品位大于47%的钛精矿,采用隔渣+两段强磁+浮选流程精矿产率和回收率指标较好。在试验室开路试验的基础上进行浮选闭路连选试验,研究结果表明,在原矿TiO2品位为9.59%的情况下,采用隔渣+两段强磁+浮选流程,最终获得了产率8.54%、TiO2品位46.13%、回收率21.63%的钛精矿。  相似文献   

18.
为了探究通过提高磨矿细度降低河北柏泉磁选铁精矿钛含量的可行性,采用搅拌磨细磨(超细磨)-弱磁选工艺对试样进行降钛研究,在磨矿细度d90为34.7 μm,弱磁选磁场强度为83.6 kA/m的条件下,铁精矿TFe品位可由63.39%增加到65.48%,TFe品位达到一级铁精粉要求,且TFe回收率为97.85%,但铁精矿中杂质TiO2含量仅能降低1.04个百分点。通过XRD分析以及工艺矿物学分析查明,试样中钛主要存在于钛磁铁矿中;搅拌磨细磨(超细磨)-弱磁选工艺可以脱除铁精矿中的钛铁矿和钛赤铁矿,但是钛磁铁矿与磁铁矿属于类质同象,物理化学性质非常相近,难以通过磁选分离,这是该铁精矿的钛元素难以大量脱除的原因。研究结果表明,此类岩浆岩型高钛铁精矿品质较优,但钛不能通过选矿脱除,可用作其他低钛铁精粉高炉冶炼的配料。  相似文献   

19.
陕西某钛铁矿选矿试验   总被引:1,自引:0,他引:1  
针对陕西某低品位原生钛铁矿石性质的特点,采用弱磁选优先选别钛磁铁矿、弱磁选尾矿高梯度磁选预抛尾、预选粗精浮选脱硫、浮选选钛铁矿流程进行了选钛试验研究。最终获得了铁品位为52.46%、TiO2品位为11.35%、铁回收率为27.63%、TiO2回收率为16.41%的攀西式钛磁铁精矿,以及TiO2品位为46.28%、TiO2回收率为45.30%的钛铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号