首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
铬、铜含量影响钛及钛合金组织结构和性能,须对其准确测定。采用硫酸-硝酸溶样体系溶解样品,选择Cr 267.716nm、Cu 327.393nm为分析线并采用两点校正法扣除背景,使用钛基体匹配的方法绘制校准曲线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定钛及钛合金中铬和铜。方法中各元素校准曲线线性良好,相关系数均大于0.999;检出限为0.04~6.0μg/g。按照实验方法测定3个钛及钛合金样品中铬和铜,结果的相对标准偏差(RSD,n=10)小于5%。按照实验方法测定5个钛合金标准物质中铬和铜,测定结果与认定值相吻合,分析误差在实验室允许的误差范围内。  相似文献   

2.
以盐酸和硝酸溶解铝镁环样品,选择Si 212.412 nm、Mn 257.610 nm、Fe 238.204 nm、Ti 334.940 nm、Cu 324.752 nm、P 187.221 nm 作为分析线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝镁环中硅、锰、铁、钛、铜、磷。各待测元素校准曲线线性相关系数均大于0.999。方法中各待测元素的检出限为0.001 1~0.020 μg/mL,测定下限为0.003 7~0.067 μg/mL。按照实验方法测定样品中硅、锰、铁、钛、铜、磷,结果的相对标准偏差(RSD,n=6)为0.62%~3.1%;各元素的回收率在89%~116%之间。按照实验方法测定样品中硅、锰、铁、钛、铜、磷,测定值与分光光度法及原子吸收光谱法测定结果相吻合。  相似文献   

3.
成勇 《冶金分析》2018,38(8):63-69
作为核反应堆材料的钒铬钛合金要求严格控制成分符合V-(3%~5%)Cr-(3%~5%)Ti的比例关系,通常采用滴定法逐一测定合金组分铬、钛含量,操作繁杂周期较长。使用电感耦合等离子体原子发射光谱法(ICP-AES)测定V-4Cr-4Ti合金中铬和钛,满足快速高效同时测定钒铬钛合金中铬和钛的需要。重点研究了在钒铬钛三元合金共存体系下基体元素钒以及铬、钛相互之间的光谱干扰和基体效应,完成了对铬、钛的20余条主要谱线的光谱干扰试验和分析,最终优选了灵敏度适宜、未受共存组分光谱重叠干扰的铬、钛分析谱线;实验表明钒基体效应和连续背景叠加对测定产生正干扰,方法采用基体匹配和同步背景校正消除其影响。方法优化了仪器工作条件以及各分析谱线的积分区域、背景校正区域等检测条件。验证实验表明:铬和钛的检测范围为2.50%~6.00%,校准曲线线性相关系数大于0.9992。按照实验方法测定两个V-4Cr-4Ti合金样品中铬和钛,测定结果的相对标准偏差(RSD,n=8)小于0.70%;加标回收率为98%~102%;按照实验方法测定4个钒铬钛合金样品中铬、钛,与标准方法GB/T 4698.10—1996和YS/T 514.1—2009采用氧化还原滴定法分别测定铬和钛的测定值相吻合。  相似文献   

4.
使用氢氟酸、盐酸、硝酸混合酸溶解TaNb6合金样品,选择Nb 309.418 nm、Fe 259.940 nm、Cr 267.716 nm、Ni 221.647 nm、Mn 257.610 nm、Ti 336.121 nm、Al 167.076 nm、Cu 224.700 nm、Sn 189.989 nm、Pb 261.418 nm和Zr 339.19 8 nm为分析线,在仪器最佳工作条件下,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定TaNb6合金中铌、铁、铬、镍、锰、钛、铝、铜、锡、铅和锆,从而建立了TaNb6合金中铌及10种杂质元素的测定方法。采用基体匹配法绘制校准曲线可消除基体效应的影响。各待测元素校准曲线线性回归方程的相关系数均大于0.999 5;方法中各元素的检出限为0.000 1~0.02 μg/mL。按照实验方法测定TaNb6样品中铌、铁、铬、镍、锰、钛、铝、铜、锡、铅、锆,结果的相对标准偏差(RSD,n=7)为0.021%~0.25%,与国家标准GB/T 15076—2008(钽铌合金成分测试的规定方法)测定结果相吻合。  相似文献   

5.
杜米芳 《冶金分析》2015,35(10):77-81
对于0.100 g钛合金试样,加入10 mL 硫酸(1+1)和2~3 滴硝酸可将钛合金溶解成清亮的、能够长期稳定存在的溶液。通过研究钛合金中钼、锆、铌的谱线干扰情况,选择钼 202.031 nm、锆339.197 nm和铌 269.706 nm为分析线,实现了电感耦合等离子体原子发射光谱法(ICP-AES)对钛合金中钼、锆、铌的测定。通过采用钛合金国家标准物质按照试样处理方法和采用钛打底加入钼、锆、铌标准溶液制备而成的系列钼、锆、铌标准溶液分别绘制校准曲线,所得校准曲线相关系数(r)均大于0.999。但因市场上同时含有钼、锆、铌的钛合金标准物质不多,建议采用钛打底加入钼、锆、铌标准溶液的方式进行标准系列溶液的配制。各元素的检出限均不大于0.005%。采用两种标准溶液配制方式绘制校准曲线,对同一个钛合金样品进行精密度考察,结果的相对标准偏差(RSD,n=10)均小于1.0%。采用实验方法分析国家标准物质,测定值与认定值一致,误差在国标允许误差范围内,能够满足生产和科研的需要。方法适用于含铌不超过5%的钛合金的测定。  相似文献   

6.
钟华 《冶金分析》2012,32(3):30-34
研究了纯化学物质校准-高频燃烧红外吸收法测定钛及钛合金中碳含量的分析方法。对钛及钛合金、校准样品(蔗糖) 在高频燃烧红外吸收法测定碳量中所使用的助熔剂进行了条件试验,确定二元助熔剂(050 g Sn+150 g Cu)能为钛及钛合金提供最佳释放条件。在钛及钛合金助熔剂(050 g Sn+150 g Cu)的基础上,加入0500 g纯铁有助于纯化学物质(蔗糖)中碳的释放,测定结果与加入0500 g纯钛的结果一致。采用不同碳含量的蔗糖标准溶液建立了校准曲线,测定范围为0004%~0060%(碳质量分数)。采用该校准曲线测定了10个钛及钛合金标准样品中的碳含量,测定结果与认定值吻合。方法用于实际样品分析,分析结果与重量法一致,相对标准偏差(RSD,n=8)为08%~51%。  相似文献   

7.
使用盐酸并采用微波消解处理样品,选择Fe 238.204nm、Ca 317.933nm、Mg 285.213nm、Al 396.152 nm、Cd 214.438nm、Cr 267.716nm、Cu 324.754nm、Ni 221.647nm、Pb 220.353nm、Si 251.611nm、Tl 190.856nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊,从而建立了氧化铟锡靶材中铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊等痕量杂质元素的分析方法。各元素校准曲线线性相关系数均大于0.9995;方法中各元素的测定下限为0.30~1.78μg/g。按照实验方法测定2个氧化铟锡靶材样品中铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊,结果的相对标准偏差(RSD,n=11)为1.1%~8.2%,加标回收率为92%~108%。  相似文献   

8.
钒钛磁铁矿是重要的炼钢原料,其中的钒、钛元素具有极高的综合利用价值。钒、钛元素的测定方法多样,其中化学湿法手段繁琐,而先采用微波消解法处理样品,再使用电感耦合等离子体原子发射光谱法(ICP-AES)测定需附加溶样设备,成本较高。样品采用硼酸-碳酸钠混合熔剂在1 000 ℃熔融、盐酸浸出的方法溶解样品,选择V 309.311 nm、Ti 334.941 nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定钒钛磁铁矿中钒和钛。钒和钛的校准曲线线性相关系数均大于0.999,方法检出限均为0.000 5%。按照实验方法测定钒钛磁铁矿国家标准样品GBW07225、GBW07226a、GBW07227中钒、钛,结果的相对标准偏差(RSD,n=7)小于4%,测定值与认定值相一致。选择3个钒钛磁铁矿实际样品,分别按照实验方法和国家标准方法GB/T 6730.31—2017(分光光度法测定钒)及GB/T 6730.23—2006(滴定法测定钛)测定钒和钛,结果相一致。  相似文献   

9.
冯宗平 《冶金分析》2019,39(11):57-62
准确、快速地测定铁矿中各种杂质元素含量,对铁矿石质量判定具有重要意义。试验采用“酸溶-碱熔回渣”的方法消解样品,先用硝酸、盐酸溶解样品,再过滤,滤渣及滤纸灰化后再用碳酸钠-硼酸混合熔剂熔融,溶液中的总固体溶解量(TDS)为2.5mg/mL。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌等16种元素。各待测元素校准曲线的线性相关系数均大于0.999;方法检出限为0.00018%~0.034%。实验方法用于2个铁矿石实际样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌的测定,结果的相对标准偏差(RSD,n=8)为0.40%~9.8%;按照实验方法测定4个铁矿石标准样品,测定值与认定值相吻合;测定4个铁矿石生产样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌,测定值与GB/T 6730系列标准方法测定值相吻合。  相似文献   

10.
冯宗平 《冶金分析》1982,39(11):57-62
准确、快速地测定铁矿中各种杂质元素含量,对铁矿石质量判定具有重要意义。试验采用“酸溶-碱熔回渣”的方法消解样品,先用硝酸、盐酸溶解样品,再过滤,滤渣及滤纸灰化后再用碳酸钠-硼酸混合熔剂熔融,溶液中的总固体溶解量(TDS)为2.5mg/mL。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌等16种元素。各待测元素校准曲线的线性相关系数均大于0.999;方法检出限为0.00018%~0.034%。实验方法用于2个铁矿石实际样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌的测定,结果的相对标准偏差(RSD,n=8)为0.40%~9.8%;按照实验方法测定4个铁矿石标准样品,测定值与认定值相吻合;测定4个铁矿石生产样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌,测定值与GB/T 6730系列标准方法测定值相吻合。  相似文献   

11.
铌钨合金已成为新一代航天飞行器发动机高温部件的首选材料,准确测定其化学成分对材料加工工艺和材料性能研究具有指导意义。采用氢氟酸、硝酸溶解试样,选择Ta 240.063 nm、Si 250.690 nm、Fe 238.204 nm、Al 394.403 nm、Ti 336.121 nm、Cu 219.226 nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定铌钨合金中钽、硅、铁、铝、钛、铜的方法。钽的质量分数为0.010%~0.60%,硅、铁、铝、钛、铜的质量分数在0.005 0%~0.10%范围内,各元素校准曲线的线性相关系数在0.999 5以上。元素检出限为0.001 12%~0.023 3%(质量分数)。方法应用于铌钨合金中钽、硅、铁、铝、钛、铜的测定,结果的相对标准偏差(RSD,n=11)不大于4.4%;回收率为97%~104%。按照实验方法测定铌钨合金标准物质中钽、硅、铁、铝、钛、铜,测定结果与认定值相吻合,分析误差在实验室允许的误差范围内。  相似文献   

12.
使用化学湿法测定磷铁中各元素含量时,用酸溶解样品,不加氢氟酸样品溶解不完全,而加入氢氟酸会使样品中硅生成气态四氟化硅,因此要同时测定磷铁中锰、钛、硅和磷,必须使用碱熔解样品。实验用氢氧化钠和过氧化钠熔解磷铁样品,硝酸浸取后用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷铁中锰、钛、硅和磷。采用基体匹配的方法绘制校准曲线,各元素校准曲线的线性相关系数均为0.99998;选择各元素分析谱线分别为Mn 257.610nm、Ti 334.941nm、Si 288.158nm和P 178.222nm;方法中各元素的定量限分别为:锰0.015%(质量分数,下同),钛0.015%,硅0.023%,磷0.13%。按照实验方法测定两个磷铁标准样品和两个磷铁样品,测定结果的相对标准偏差(RSD,n=11)为0.29%~4.2%;分别按照实验方法和其他方法(其中火焰原子吸收光谱法(AAS)测定锰、X射线荧光光谱法(XRF)测定钛、磷以及硅钼蓝分光光度法测定硅)测定磷铁中锰、钛、硅和磷,结果相吻合。  相似文献   

13.
使用化学湿法测定磷铁中各元素含量时,用酸溶解样品,不加氢氟酸样品溶解不完全,而加入氢氟酸会使样品中硅生成气态四氟化硅,因此要同时测定磷铁中锰、钛、硅和磷,必须使用碱熔解样品。实验用氢氧化钠和过氧化钠熔解磷铁样品,硝酸浸取后用电感耦合等离子体原子发射光谱法(ICP-AES)测定磷铁中锰、钛、硅和磷。采用基体匹配的方法绘制校准曲线,各元素校准曲线的线性相关系数均为0.99998;选择各元素分析谱线分别为Mn 257.610nm、Ti 334.941nm、Si 288.158nm和P 178.222nm;方法中各元素的定量限分别为:锰0.015%(质量分数,下同),钛0.015%,硅0.023%,磷0.13%。按照实验方法测定两个磷铁标准样品和两个磷铁样品,测定结果的相对标准偏差(RSD,n=11)为0.29%~4.2%;分别按照实验方法和其他方法(其中火焰原子吸收光谱法(AAS)测定锰、X射线荧光光谱法(XRF)测定钛、磷以及硅钼蓝分光光度法测定硅)测定磷铁中锰、钛、硅和磷,结果相吻合。  相似文献   

14.
采用硫酸(1+2)溶解样品,选择Ce 418.659nm、Er 326.478nm、Gd 342.246nm、La 408.671nm、Nd 406.108nm和Y 371.029nm为分析线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定Ce、Er、Gd、La、Nd、Y,从而建立了钛合金中Ce、Er、Gd、La、Nd、Y的测定方法。对共存元素的干扰情况进行了研究,得到各干扰元素的干扰系数,采用干扰系数校正法解决谱线干扰问题。各元素质量分数在0.005%~2.00%范围内校准曲线线性关系良好,相关系数均大于0.999 9,方法检出限为3~14μg/g。采用实验方法对钛合金标准样品、钛合金样品中Ce、Er、Gd、La、Nd、Y进行测定,结果的相对标准偏差(RSD,n=6)为0.63%~8.1%,结果与认定值或电感耦合等离子体质谱法(ICP-MS)测定值基本一致。  相似文献   

15.
氢含量对钛及钛合金的组织形貌与物理机械性能有显著影响。分别采用镍(简称镍助熔剂法)与锡(简称锡浴法)为助熔剂,用惰气熔融-红外法对钛及钛合金中氢含量进行测定,从氢释放率、空白值、校准方式、检出限、定量限、精密度、正确度等方面对这两种方法进行了对比。结果表明,锡浴法相对于镍助熔剂法氢释放率高且空白值低,两种方法在测定过程中不能使用同一校准曲线。锡浴法在3.8 μg/g≤w(H)≤200 μg/g范围内有良好的线性关系,相关系数大于0.999;镍助熔剂法宜采取分段校准方式,在8.2 μg/g≤w(H)<90 μg/g和90 μg/g≤w(H)≤200 μg/g分析范围内分别建立校准曲线,各分段校准曲线的相关系数均不小于0.999。锡浴法测定氢的检出限和定量限(分别为1.2 μg/g和3.8 μg/g)相对镍助熔剂法均较低(分别为2.5 μg/g和8.2 μg/g)。采用镍助熔剂法和锡浴法对钛合金标准样品中氢含量平行测定6次,结果表明,两种方法测定结果与认定值均保持一致。将这两种方法应用于样品分析,镍助熔剂法测定结果的相对标准偏差(RSD,n=6)为1.9%~8.6%,锡浴法为1.6%~4.3%。采用镍助熔剂法和锡浴法对多种牌号的钛及钛合金中氢含量分别进行单次测量,用其中一种分析方法精密度参数中的重复性限r和再现性限R检验两种分析方法测量结果的一致性,结果表明,镍助熔剂法的测定结果与锡浴法具有良好的一致性。锡浴法的氢释放率、空白值、检出限、定量限、精密度均优于镍助熔剂法,适用于单独测定钛及钛合金中氢含量,常作为标准方法使用。因镍助熔剂法测定条件可用于测定氧和氮,适用于钛及钛合金中氧、氮、氢的同时测定。  相似文献   

16.
采用传统湿法测定铬铁中主次元素含量时操作繁琐、不易掌握;熔融制样-X射线荧光光谱法测定高碳铬铁中铬、硅和磷的含量已有应用。为拓宽X射线荧光光谱(XRF)检测铬铁的应用,采用四硼酸锂熔剂挂壁打底保护铂合金坩埚,以四硼酸锂和碳酸锂做熔剂,用过氧化钡和硝酸钠做氧化剂对样品进行处理,实现了X射线荧光光谱对铬铁中铬、硅、磷、钛的测定。先在高频熔融炉中对样品进行预氧化,经过预氧化处理将样品中的单质元素转化成氧化物,避免高温状态下单质元素与铂形成低温共熔体而腐蚀损坏铂金坩埚,解决了熔融法处理铬铁试样时容易腐蚀坩埚的难点。在最佳实验条件下,采用高碳、中碳、低碳铬铁标准样品和用高纯铁粉和铬铁标样配制的合成标样建立相关校准曲线,铬、硅、磷和钛校准曲线的相关系数均大于0.993。对高碳铬铁标准样品进行精密度考察,4种元素测定结果的相对标准偏差(RSD,n=11)在0.068%~3.9%范围内。对铬铁标准样品进行分析,测定值与认定值相吻合。采用实验方法对铬铁样品中各元素进行测定,所得结果和湿法测得值一致性较好。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号