首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
A comparison of microstructural features in resistance spot welds of two AZ31 magnesium (Mg) alloys, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), with the same sheet thickness and welding conditions, was performed via optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). These alloys have similar chemical composition but different sizes of second-phase particles due to manufacturing process differences. Both columnar and equiaxed dendritic structures were observed in the weld fusion zones of these AZ31 SA and SB alloys. However, columnar dendritic grains were well developed and the width of the columnar dendritic zone (CDZ) was much larger in the SB alloy. In contrast, columnar grains were restricted within narrow strip regions, and equiaxed grains were promoted in the SA alloy. Microstructural examination showed that the as-received Mg alloys contained two sizes of Al8Mn5 second-phase particles. Submicron Al8Mn5 particles of 0.09 to 0.4 μm in length occured in both SA and SB alloys; however, larger Al8Mn5 particles of 4 to 10 μm in length were observed only in the SA alloy. The welding process did not have a great effect on the populations of Al8Mn5 particles in these AZ31 welds. The earlier columnar-equiaxed transition (CET) is believed to be related to the pre-existence of the coarse Al8Mn5 intermetallic phases in the SA alloy as an inoculant of α-Mg heterogeneous nucleation. This was revealed by the presence of Al8Mn5 particles at the origin of some equiaxed dendrites. Finally, the columnar grains of the SB alloy, which did not contain coarse second-phase particles, were efficiently restrained and equiaxed grains were found to be promoted by adding 10 μm-long Mn particles into the fusion zone during resistance spot welding (RSW).  相似文献   

3.
The effects of the welding parameters on weld-bead morphology and the microstructural evolution of autogenous conduction-mode melted laser welds in gallium delta-stabilized plutonium were investigated. This investigation demonstrates that delta-stabilized plutonium is easily welded with a pulsed Nd:YAG laser. Variations in the welding parameters created a range of heat inputs that had a significant effect on the size and morphology of the resultant weld and associated heat-affected-zone (HAZ) microstructure. Unlike other low-melting-temperature materials such as aluminum alloys, neither fusion-zone porosity nor hot cracking was observed. The reactivity of plutonium promotes the rapid formation of surface oxides that inhibit complete weld-joint fusion. The high viscosity of the plutonium molten pool impeded the breakup of the surface oxide by fluid motion, thus further impeding joint fusion. Modifications to input parameters to affect changes in the weld-pool flow were only partially successful in improving joint fusion. Analysis of the weld region using optical and electron microscopy and electron microprobe analysis revealed fusion-zone microstructures consisting of fine acicular delta grains, with a limited amount of retained alpha phase. The Pu6Fe, the low-melting-point intermetallic phase, was observed in the base material and the partially melted HAZ. Further investigation into the solid/solid phase transformations, specifically the effect of the cooling rate, during the cooling of the weld will be required to describe fully the microstructural development of the fusion zone.  相似文献   

4.
This study was aimed at characterizing microstructural change and evaluating tensile and fatigue properties of fiber laser welded AZ31B-H24 Mg alloy with special attention to the effect of welding speed. Laser welding led to the formation of equiaxed dendrites in the fusion zone and columnar dendrites near the fusion zone boundary along with divorced eutectic Mg17Al12 particles and recrystallized grains in the heat-affected zone. The lowest hardness across the weld appeared in the fusion zone. Although the yield strength, ductility, and fatigue life decreased, the hardening capacity increased after laser welding, with a joint efficiency reaching about 90 pct. A higher welding speed resulted in a narrower fusion zone, smaller grain size, higher yield strength, and longer fatigue life, as well as a slightly lower strain-hardening capacity mainly because of the smaller grain sizes. Tensile fracture occurred in the fusion zone, whereas fatigue failure appeared essentially in between the heat-affected zone and the fusion zone. Fatigue cracks initiated from the near-surface welding defects and propagated by the formation of fatigue striations together with secondary cracks.  相似文献   

5.
The evolution of microstructure and texture in the AZ-series Mg alloys subjected to electron-beam welding and gas tungsten arc welding are examined. Electron-beam welding is demonstrated to be a promising means of welding delicate Mg plates, bars, or tubes with a thickness of up to 50 mm; gas tungsten arc welding is limited to lower-end thin Mg sheets. The grains in the fusion zone (FZ) are nearly equiaxed in shape and ∼8 μm or less in size, due to the rapid cooling rate. The as-welded FZ microhardness and tensile strength are higher than the base metals due to the smaller grain size. The weld efficiency, defined as the postweld microhardness or tensile strength at the mid-FZ region divided by that of the unwelded base metal, is around 110 to 125 pct for electron-beam welding and 97 to 110 pct for gas tungsten arc welding. There are three main texture components present in the electron-beam-welded (EBW) FZ, i.e., (with TD// ), (with ND ∼15 deg), and (with WD ∼30 deg), where TD, ND, and WD are the transverse, normal, and welding directions, respectively. The crystal growth tends to align toward the most closed-packed direction, . The texture in gas tungsten arc welded (GTAW) specimens is more diverse and complicated than the EBW counterparts, due to the limited and shallow FZ and the lower cooling rate. The cooling rates calculated by the three-dimensional (3-D) and two-dimensional (2-D) heat-transfer models are considered to be the lower and upper bounds. The cooling rate increases with decreasing Al content, increasing weld speed, and increasing distance from the weld top surface. The influences of the FZ location, welding speed, and alloy content on the resulting texture components are rationalized and discussed.  相似文献   

6.
The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.  相似文献   

7.
Because joining dissimilar metals is often difficult by fusion joining, interest has been growing rapidly in using friction stir welding (FSW), which is considered a revolutionary solid-state welding process, as a new way to join dissimilar metals such as Al alloys to Mg alloys, Cu, and steels. Butt FSW of Al to Mg alloys has been studied frequently recently, but the basic issue of how the welding conditions affect the resultant joint strength still is not well understood. Using the widely used alloys 6061 Al and AZ31 Mg, the current study investigated the effect of the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed, and the tool rotation speed on the weld strength. Unlike previous studies, the current study (1) determined the heat input by both torque and temperature measurements during FSW, (2) used color metallography with Al, Mg, Al3Mg2, and Al12Mg17 all shown in different colors to reveal clearly the formation of intermetallic compounds and material flow in the stir zone, which are known to affect the joint strength significantly, and (3) determined the windows for travel and rotation speeds to optimize the joint strength for various material positions. The current study demonstrated clearly that the welding conditions affect the heat input, which in turn affects (1) the formation of intermetallics and even liquid and (2) material flow. Thus, the effect of welding conditions in Al-to-Mg butt FSW on the joint strength now can be explained.  相似文献   

8.
The effect of post-weld heat treatments (PWHTs) on the evolution of precipitate phases in dissimilar metal welds made between 9 pct Cr P91 alloy and 2.25 pct Cr T/P24-type weld metal has been investigated. Sections of multi-pass fusion welds were analyzed in their as welded condition and after PWHTs of 2 and 8 hour duration at 1003 K (730 °C). Thin foil specimens and carbon extraction replicas have been examined in transmission electron microscopes in order to identify precipitate phases and substantiate their distributions in close proximity to the fusion line. The findings of these studies confirm that a carbon-depleted region develops in the lower alloyed weld material, adjacent to the weld interface, during thermal processing. A corresponding carbon enriched region is formed, simultaneously, in the coarse grain heat affected zone of the P91 parent alloy. It has been demonstrated that carbon depletion from the weld alloy results in the dissolution of M7C3 and M23C6 chromium carbides. However, micro-alloying additions of vanadium and niobium which are made to both the P24 and P91 alloys facilitate the precipitation of stable, nano-scale, MX carbonitride particles. This work demonstrates that these particles, which are of key importance to the strength of ferritic creep resistant alloys, are retained in carbon-depleted regions. The microstructural stability which is conferred by their retention means that the pernicious effects of recrystallization are largely avoided.  相似文献   

9.
This study aims to investigate the effects of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of the four squeeze-cast magnesium alloys based on the commercial AZ91 alloy. Microstructural observation, in situ fracture tests, and fractographic observation were conducted on the alloys to clarify the microfracture process. Microstructural analyses indicated that grain refinement could be achieved by small additions of alloying elements, although the discontinuously precipitated Mg17Al12 phases still existed on grain boundaries. From in situ fracture observation of an AZ91-Sr alloy, it was seen that coarse needle-shaped compound particles and Mg17Al12 phases located on the grain boundary provided easy intergranular fracture sites under low stress intensity factor levels, resulting in the drop in toughness. On the other hand, the AZ91-Y and AZ91-Nd alloys showed improved fracture toughness, since deformation and fracture paths proceeded into grains rather than to grain boundaries, as the planar slip bands and twinnings actively developed inside the grains. These findings suggested, on the basis of the well-developed planar slip bands and twinnings, that the small addition of Y or Nd was very effective in improving fracture toughness.  相似文献   

10.
Laser welding and laser weld bonding (LWB) Mg to Al joints were obtained in different welding parameters. The penetrations and microstructures of these kinds of joints changed with the increasing of pulse laser power density. Both laser welding and LWB Mg to Al joints with the best properties were obtained in conductive welding mode. In laser welding Mg to Al joint, several intermetallics formed at the bottom of the fusion zone, where some cracks were generated. In laser weld bonding Mg to Al joint, the decomposition of the adhesive caused a baffle effect on the diffusion between the Mg and the Al. The intermetallics formed in the middle of the fusion zone, and the thickness of Mg17Al12 layer was approximately 10 to 20 μm and the Mg2Al3 layer was less than 5 μm, which influenced the property of the joint less.  相似文献   

11.
The next generation of Ni-based alloys for aeroengines are richer in γ′ than existing alloys and are more difficult to weld by conventional means. Inertia welding is currently being developed as a joining technique for these alloys. Steep microstructural gradients have been observed in nickel-based superalloy RR1000 tube structures welded by inertia friction welding,[1] and in this article, the concomitant residual stresses are mapped at depth using neutron diffraction. One tube in the aswelded and two in the postweld heat-treated (PWHT) condition have been investigated. In the case of the as-welded specimen, it was necessary to establish the variation of the stress-free lattice parameter, a 0, across the weld line to infer elastic strain from lattice spacing changes. A biaxial sin2 ψ measurement on thin slices was used to determine a 0 as a function of the axial position from the weld line. This was in excellent agreement with the variation inferred by imposing a stress balance on the axial measurements. The change of a 0 across the weld line can be rationalized in terms of the observed variation in the element partitioning effect between the matrix (γ) and the precipitates (γ′). It was found that the residual stresses in the weld and heat-affected zone generated by the welding process are large, especially close to the inner diameter of the welded ring. The experimental results have shown that, in order to relax the residual stresses sufficiently, the heat-treatment temperature must be increased by 50 °C over the conventional heat-treatment temperature. This is due to the high γ′ content of RR1000.  相似文献   

12.
The AZ31B magnesium alloy sheet added with 0.5 wt.% Ce was welded with friction stir welding(FSW).The microstructures and mechanical properties of the welded joint were investigated.The results showed that the microstructures in the weld nugget zone were uniform and with small equiaxed grains.The grains in the heat-affected zone and the thermo-mechanical affected zone were coarser than those in the base metal zone and the weld nugget zone.The ultimate tensile strength of AZ31B magnesium alloy added with 0.5...  相似文献   

13.
Liu  L.  Xiao  L.  Feng  J.C.  Tian  Y.H.  Zhou  S.Q.  Zhou  Y. 《Metallurgical and Materials Transactions A》2010,41(10):2651-2661
Resistance spot welding of AZ31 magnesium alloys from different suppliers, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), was studied and compared in this article. The mechanical properties and microstructures have been studied of welds made with a range of welding currents. For both groups of welds, the tension-shear fracture load (F C) and fracture toughness (K C) increased with the increase in welding current. The F C and K C of AZ31-SA welds were larger than those of AZ31-SB welds. The fracture surfaces of AZ31-SB welds were relatively flatter than those of AZ31-SA. Microstructural examination via optical microscope demonstrated that almost all weld nuggets comprised two different zones, the columnar dendritic zone (CDZ), which grew epitaxially from the fusion boundary, and the equiaxed dendritic zone (EDZ), which formed in the center of the nugget. The nature and extent of the CDZ seemed to be critical to the strength and toughness of spot welds because of its position adjacent to the inherent external circular crack-like notch of spot welds and the stress concentration in this region. The width and microstructure of the CDZ were different between AZ31-SA and AZ31-SB. The AZ31-SA alloy produced finer and shorter columnar dendrites, whereas the AZ31-SB alloy produced coarser and wider columnar dendrites. The width of the CDZ close to the notch decreased with the increase of current. The CDZ disappeared when the current was higher than a critical value, which was about 24 kA for AZ31-SA and 28 kA for AZ31-SB. The microhardness of the two base materials was the same, but within the CDZ and EDZ, the hardness was greater in AZ31-SA than AZ31-SB welds. It is believed that the different microstructures of spot welds between AZ31-SA and AZ31-SB resulted in different mechanical properties; in particular, K C increased with the welding current because of the improved columnar-to-equiaxed transition.  相似文献   

14.
CO2 laser beam welding of 6061-T6 aluminum alloy thin plate   总被引:1,自引:0,他引:1  
Laser beam welding is an attractive welding process for age-hardened aluminum alloys, because its low heat input minimizes the width of weld fusion and heat-affected zones (HAZs). In the present work, 1-mm-thick age-hardened Al-Mg-Si alloy, 6061-T6, plates were welded with full penetration using a 2.5-kW CO2 laser. Fractions of porosity in the fusion zones were less than 0.05 pct in bead-on-plate welding and less than 0.2 pct in butt welding with polishing the groove surface before welding. The width of a softened region in the-laser beam welds was less than 1/4 times that of a tungsten inert gas (TIG) weld. The softened region is caused by reversion of strengthening β″ (Mg2Si) precipitates due to weld heat input. The hardness values of the softened region in the laser beam welds were almost fully recovered to that of the base metal after an artificial aging treatment at 448 K for 28.8 ks without solution annealing, whereas those in the TIG weld were not recovered in a partly reverted region. Both the bead-on-plate weld and the butt weld after the postweld artificial aging treatment had almost equivalent tensile strengths to that of the base plate.  相似文献   

15.
Creep properties of AZ91 magnesium alloy and AZRC91 (AZ91 + 1 wt pct RE + 1.2 wt pct Ca) alloy were investigated using the impression creep method. It was shown that the creep properties of AZ91 alloy are significantly improved by adding Ca and rare earth (RE) elements. The improvement in creep resistance is mainly attributed to the reduction in the amount and continuity of eutectic β(Mg17Al12) phase as well as the formation of new Al11RE3 and Al2Ca intermetallic compounds at interdendritic regions. It was found that the stress exponent of minimum creep rate, n, varies between 5.69 and 6 for AZ91 alloy and varies between 5.81 and 6.46 for AZRC91 alloy. Activation energies of 120.9 ± 8.9 kJ/mol and 100.6 ± 7.1 kJ/mol were obtained for AZ91 and AZRC91 alloys, respectively. It was shown that the lattice and pipe-diffusion-controlled dislocation climb are the dominant creep mechanisms for AZ91 and AZRC91 alloys, respectively. The constitutive equations, correlating the minimum creep rate with temperature and stress, were also developed for both alloys.  相似文献   

16.
Friction stir welding process is a promising solid state joining process with the potential to join low melting point materials, particularly aluminum alloys. The most attractive reason for this is the avoidance of solidification defects formed during conventional fusion welding processes. Tool rotational speed and the welding speed play a major role in deciding the weld quality. In the present work an effort has been made to study the effect of the tool rotational speed and welding speed on mechanical and metallurgical properties of friction stir welded joints of aluminum alloy AA6082-T651. The micro hardness profiles obtained on welded zone indicate uniform distribution of grains in the stir zone. The maximum tensile strength obtained is 263 MPa which is about 85% of that of base metal. Scanning electron microscope was used to show the fractured surfaces of tensile tested specimens.  相似文献   

17.
The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)〈11 \( \overline{2} \) 0〉 with the (0001) plane nearly parallel to the rolled sheet surface and 〈11 \( \overline{2} \) 0〉 directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)〈10 \( \overline{1} \) 0〉 in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (10 \( \overline{1} \) 0) and pyramidal planes (10 \( \overline{1} \) 1) exhibited a 30 deg + (n ? 1) × 60 deg rotation (n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.  相似文献   

18.
The good specific strength and specific modulus of magnesium alloys had drawn the attention of the automotive manufacturers for use in fuel efficient vehicles. Among the cast magnesium alloys, AZ91 (Mg?C9Al?C1Zn) is the most sought alloy because of its good casting properties. However, this alloy loses its strength and creep resistance properties above 120?°C due to softening of the ?? phase (Mg17Al12). Hence, this alloy cannot be used for making heavier engine components (power train), which require the thermal stability up to about 250?°C. The paper discusses the approach of modifying the AZ91 alloy by minor alloying additions to improve the high temperature withstanding capability without significantly affecting its casting properties. Additions of Ca to AZ91 alloy to the levels of about 0.4?wt% increased the ambient and high temperature strength of the base alloy. Additions of other minor alloying elements such as Sb, Pb, rare earths etc. can also increase the high temperature capability of the AZ91 by further modifying the ?? phase structure. The paper overviews the work carried out by the authors on the role of different alloying additions on the microstructure and mechanical properties of AZ91 magnesium alloys.  相似文献   

19.
Resistance spot welding of AZ31 magnesium alloys from different suppliers, AZ31-SA (from supplier A) and AZ31-SB (from supplier B), was studied and compared in this article. The mechanical properties and microstructures have been studied of welds made with a range of welding currents. For both groups of welds, the tension-shear fracture load (F C) and fracture toughness (K C) increased with the increase in welding current. The F C and K C of AZ31-SA welds were larger than those of AZ31-SB welds. The fracture surfaces of AZ31-SB welds were relatively flatter than those of AZ31-SA. Microstructural examination via optical microscope demonstrated that almost all weld nuggets comprised two different zones, the columnar dendritic zone (CDZ), which grew epitaxially from the fusion boundary, and the equiaxed dendritic zone (EDZ), which formed in the center of the nugget. The nature and extent of the CDZ seemed to be critical to the strength and toughness of spot welds because of its position adjacent to the inherent external circular crack-like notch of spot welds and the stress concentration in this region. The width and microstructure of the CDZ were different between AZ31-SA and AZ31-SB. The AZ31-SA alloy produced finer and shorter columnar dendrites, whereas the AZ31-SB alloy produced coarser and wider columnar dendrites. The width of the CDZ close to the notch decreased with the increase of current. The CDZ disappeared when the current was higher than a critical value, which was about 24 kA for AZ31-SA and 28 kA for AZ31-SB. The microhardness of the two base materials was the same, but within the CDZ and EDZ, the hardness was greater in AZ31-SA than AZ31-SB welds. It is believed that the different microstructures of spot welds between AZ31-SA and AZ31-SB resulted in different mechanical properties; in particular, K C increased with the welding current because of the improved columnar-to-equiaxed transition.  相似文献   

20.
The corrosion of a hot-chamber die-cast AZ91D thin plate (1.4 mm in thickness) was investigated in terms of its microstructure, to elucidate the role of die-chill skin in corrosion. The die-chill skin was composed of a thin layer of chill zone and a thick layer of an interdendritic Al-rich α-Mg/Al12Mg17 β-phase particle/α-Mg grain composite microstructures. The chill zone (4±1 μm in thickness) had fine columnar and equiaxed grains and contained a distribution of submicron Mg-Al-Zn intermetallic particles. Beneath the chill zone, Al12Mg17 β particles were irregularly shaped but did not have an interdendritic network morphology. Furthermore, Al-rich α phase (also known as eutectic α) was in the interdendritic network, which occupied a higher volume fraction than the β phase in the die-skin layer. Corrosion characteristics were studied via constant-immersion and electrochemical tests. Although previous studies have ascribed the fine microstructure to good corrosion resistance for the AZ91D alloy, the present study showed severe corrosion of the sample with a die skin in chloride solution. Moreover, the sample without the die skin on the surface corroded more slowly. The inferior corrosion performance of the die skin was considered to be related to the high volume fraction of the interdendritic network of Al-rich α phase contained in the die skin, owing to the high cooling rate during solidification. The Al-rich α phase does not increase the corrosion resistance of the AZ91D alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号