首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
锂离子电池商用负极材料石墨比容量低,难以满足市场需求,金属有机骨架材料(metal-organic framework materials,MOFs)具有可调控的结构、较大的表面积和可调节的孔径,可用作下一代电化学储能器件,引起广泛研究。本文综述了金属(Fe、Co、Zn、Mn、Cu)基金属有机骨架及其衍生物的合成,重点介绍了以金属有机骨架材料为前驱体制备过渡金属氧化物(transition metal oxide,TMO)/C作为锂离子电池负极材料的研究进展,并对其发展方向进行了展望。  相似文献   

2.
金属有机框架(MOFs)是由金属离子或团簇和有机配体组成的、由中等强度的配位键连接起来的具有分子内孔隙的有机-无机杂化材料。MOFs具有比表面积大、孔隙度高、结构多样性及孔道表面可修饰等特点,因此, MOFs衍生材料在催化领域得到了广泛的研究和应用。近年来,在电化学催化领域,大量的由MOFs衍生得到的碳纳米材料或纳米颗粒与碳的复合物被运用于电催化时表现出优异的催化性能。为了制备出具有不同催化功能且高效的MOFs衍生物催化剂,需要重点关注MOFs材料本身的特性(结构、杂原子掺杂等)与热处理条件(活化气氛、温度、时间和加热梯度)等条件对催化剂电催化性能的影响。因此,主要从不同金属中心离子的角度介绍了以MOFs为前驱体制备多孔碳纳米材料、纳米颗粒/碳复合物的方法及其在还原反应(ORR),析氢反应(HER)两大电化学催化方面的应用,并对MOFs衍生物催化剂未来的发展趋势进行了展望。  相似文献   

3.
纳米多孔金属凭借比表面积大、孔结构丰富以及导电性好的优势在能源存储与转化领域具有广泛的应用。基于此,本文着重介绍了纳米多孔金属原位负载金属氧化物、硫化物、磷化物用作锂/钠离子电池负极材料的合成方法,及利用缺陷调控和表面包覆改性进一步改善其电化学性能的策略。上述研究为设计可逆容量高、循环稳定性好的电极材料提供了借鉴。  相似文献   

4.
MXenes(Mn+1XnTx)是一类二维无机化合物材料,它由几个原子层厚度的过渡金属氮化物、碳化物或碳氮化物构成。由于具有大的比表面积、快速充放电性能和小的体积变化等优点,MXenes受到越来越多研究人员的关注。研究者希望能够利用MXenes材料研发出具有优异电化学性能的锂离子电池负极材料,从而提高电池的能量密度和寿命。然而MXenes材料制备过程中产生的层间堆积和坍塌限制了其进一步的发展。目前,研究人员通过将MXenes与其他材料复合制备出具有新结构的材料,不仅可以扩大层间距,改善材料结构,还有助于改进材料的电化学性能。本文介绍了MXenes与碳纳米材料、过渡金属氧化物、过渡金属硫化物和硅等材料复合改性来提高材料电化学性能的研究策略,并探讨了MXenes和碱金属等材料复合实现稳定无枝晶的锂离子电池金属负极的方案。最后,阐述了MXenes应用在锂离子电池负极材料中面临的挑战,并作出了展望。   相似文献   

5.
硅拥有理论比容量高、锂化电压低和资源丰富的突出优势,是最具潜力的负极材料之一。然而,其巨大的体积变化导致的性能快速衰减和高成本的复杂合成工艺,仍是阻碍其工业化应用的关键。因此,我们通过将纳米硅嵌入到钴-铁双金属有机骨架(MOFs)中,制备得到多孔硅基复合材料(Si@CoFe/NC)。该结构兼具MOFs衍生材料的高导电性和独特的多孔特性,能有效的减缓充放电过程中电极的体积效应,因而展现出优异的电化学性能。所制备材料具有高达832 mAhg~(-1)(1Ag~(-1))的初始可逆比容量,且经过100次循环后,比容量依然维持在598mAhg-1。这项研究工作提出了一种简单的方法来制备具有优异电化学性能的硅基复合材料,在锂离子电池负极中具有较大的应用潜力。  相似文献   

6.
高虹  张爱黎 《有色矿冶》2004,20(2):39-42
介绍了锂离子电池的特点和优势,锂离子电池的种类和工作原理以及该电池电极材料的种类和研究开发情况,阐述了开发军用锂离子电池及其电池材料的意义。  相似文献   

7.
金属氧化物材料具有多倍于商业石墨负极的理论容量,但此类材料在储锂过程中会出现体积膨胀,导致活性物质粉化脱落,影响锂离子电池的循环寿命。以金属有机框架(MOFs)普鲁士蓝立方体为自牺牲模板合成了空心CuFe2O4立方颗粒,并将其作为锂离子电池的负极材料。CuFe2O4立方块的粒径范围在300~500 nm之间,壳层厚度为40 nm。电化学测试表明CuFe2O4立方颗粒在200 mA/g电流密度下循环200次后放电容量仍能达到742.4 mAh/g,出色的性能得益于颗粒的中空结构能够有效缓解因储锂而产生的体积膨胀,从而延长锂离子电池的循环寿命。   相似文献   

8.
商用负极材料石墨理论比容量较低,无法满足市场的需求,发展具有更高比容量的负极材料来替代石墨至关重要.介绍了过渡金属氧化物(TMO)和金属-有机框架(MOFs)的特点及锂离子电池负极材料性能改进的方法,综述了以MOFs为前驱体制备TMO/C复合材料作为锂离子电池负极的优点及研究进展,并对此类负极材料的发展趋势进行了总结与展望.  相似文献   

9.
能源危机是目前全球关注的重要问题。锂离子电池(LIB)由于其能量密度高,循环寿命好,环境友好等,已成为当前最热门的新能源技术。尽管商用的碳负极能有效降低锂枝晶的生成,但是其在储能密度方面仍然达不到人们日益增长的需求。因此,设计合成新型的锂离子电池电极材料是突破高能锂离子电池瓶颈的关键问题之一。本文作者成功合成了一种石墨烯负载多金属氧酸盐-有机骨架材料(Ni-POMs),并且将该材料用于锂离子电池负极。扫描电镜(SEM)分析显示Ni-POMs材料具有规则的六棱柱形状,X-射线衍射(XRD)测试结果显示实验样品的衍射峰与计算模拟衍射峰一致。石墨烯负载后样品的形貌出现部分破坏,但仍可以观察到六棱柱形状。在100 mA/g电流密度下,经过50次循环后Ni-POMs材料的放电比容量可达到717 mAh/g。在800 mA/g的电流密度下,循环500次后仍能保持82.2%的容量保持率。经过石墨烯负载后,Ni-POMs@GO材料的循环性能和倍率性能进一步得到提升。Ni-POMs@GO电极的材料循环稳定性主要得益于其独特的多孔特性和高化学稳定性,石墨烯负载后为材料提供了电子传输通道,进一步提升了其电化学性能。   相似文献   

10.
近年来,锂离子电池被广泛地应用于便携式电子设备和手机,并且对于诸如电动汽车等更高要求的应用而言具有巨大的潜力。作为锂离子电池负极材料,Fe_2O_3是最有可能替代石墨的过渡金属氧化物之一。因其具有高的理论比容量(1 007 mA·h·g~(-1))、储量丰富、安全性能好、无毒、环境友好和成本低等一系列优点,被广泛应用于气体传感器、催化和锂离子电池电极材料等领域,是一种具有巨大潜力的电极材料。介绍了锂离子电池的基本结构组成和工作原理,综述了Fe_2O_3的储锂机制和制备方法,总结了近年来Fe_2O_3以及它的复合物作为锂离子电池负极材料的研究进展。  相似文献   

11.
锂离子电池(LIBs)因其能量密度高、体积小、质量轻等优点在便携式储能设备中广受欢迎。然而,传统商用LIBs存在可逆容量低、循环性能差、成本高、安全性差等问题,需要进一步提高其功率密度、能量密度、寿命和安全性。过渡金属氧化物负极材料提供的可逆容量与传统石墨材料相比高2~3倍,且具有更高的嵌锂电位和更高的安全性。同时,纳米结构电极材料由于其高比容量、快速的电子/离子转移速率,以及具有可减轻体积膨胀的自由空间等优点,成为电池电极的理想材料。本文综述了氧化铜(CuO)纳米结构材料用于LIBs的研究进展,包括球状、线状、片状等纳米结构,还阐述了它们的优势;还介绍了其他过渡金属氧化物纳米结构材料在LIBs中的应用;最后,讨论了CuO及其他过渡金属氧化物纳米结构材料未来在LIBs中应用的机遇和挑战。  相似文献   

12.
红磷具有低成本、比容量高等优点,但由于其本征电导率低,在脱嵌锂过程中体积变化大,导致其电化学性能稳定性差,严重制约了其商业应用。通过静电自组装的方法,将红磷包覆在高导电性的石墨烯中,采用扫描电镜(SEM)、X射线衍射(XRD)等测试手段对其形貌、组分进行了分析,将其作为锂离子电池负极材料,并进行了相关的电化学测试。结果表明,相比于红磷粉末电极材料,石墨烯包覆红磷电极材料,具有更好的电化学稳定性,在循环100圈后,仍能保持933 mAh·g-1的比容量,远高于红磷粉末电极材料。这可以归结于高导电性的石墨烯可以提供有效的电子/离子传输,同时石墨烯包覆有助于抑制红磷颗粒的体积膨胀,保证了结构的稳定性。  相似文献   

13.
金属有机骨架材料(MOFs)是近年来发展迅猛的一种具有三维孔结构的新型高分子材料,由有机配体和金属离子通过配位键自组装形成,具有比表面积大、孔隙率高、微孔结构有序等优良的性能在气体存储、吸附分离等领域受到越来越多的关注。综述了利用包括溶剂(水)热合成法、微波辅助合成法、扩散法、超声法、机械研磨法等合成MOFs的优缺点。对近年来MOFs在吸附挥发性有机物(VOCs)领域的研究进行了综述,对MOFs材料在未来的研究及发展进行了展望。  相似文献   

14.
层状Ni-Mn基锂离子电池正极材料进展   总被引:1,自引:1,他引:1  
层状Ni—Mn基锂离子电池正极材料具有层状结构镍酸锂(LiNiO2)的高比容量以及尖晶石型结构锰酸锂(LiMn2O4)的高安全性、低价格等特点,是最有可能代替或部分代替LiCoO2的新型正极材料用于小型锂离子电池,同时也可望用作低成本、高安全性和大容量动力型锂离子电池的正极材料。本文综述了层状Li—Ni—Mn—O系化合物和LiNi1/3Mn1/3Co1/3O2的合成工艺、结构特点和电化学性能,阐述了层状Ni—Mn基锂离子电池正极材料的发展、研究开发现状和应用前景。  相似文献   

15.
正柔性锂离子电池由于具有高能量密度等优点,在柔性可穿戴电子设备领域具有广阔的应用前景。但如何设计和制备高性能储能电极材料和研制柔性锂离子电池仍然面临着科学挑战。近日,中山大学化学学院童叶翔教授和广州大学刘兆清教授在设计柔性锂离子电池负极材料上取得了突破,以表面刻蚀剥离处理的  相似文献   

16.
金属有机框架材料(MOFs)由金属团簇和有机配体以配位键的形式结合而成,是一种比表面积大、活性位点多的多孔性材料.近年来,已经成功制备出功能多样性的新型材料,并应用于不同的领域,通过MOFs连接起不同学科的交叉融合.MOFs的发展前景良好,在电催化领域,研究者们发现其具有巨大潜力,并在研究过程中取得了重大突破.文章将从金属有机框架材料的几种常见合成方法,及它的电催化性能及其应用等方面展开.  相似文献   

17.
具有高能量密度的硅材料是锂离子电池负极的优选材料之一。但是,低电导率和在充放电过程中伴随的巨大体积变化而导致循环过程中容量迅速衰减,阻碍了硅材料商业化。本文以商业化的铝硅合金为硅源,通过冷冻干燥方法将氧化石墨烯(GO)包覆在其表面,制备了微米级的多孔硅(PSi)与GO的复合材料PSi@GO。该复合材料核层多孔硅内部丰富的孔隙提供充足的空间以适应硅的体积变化,外层的氧化石墨烯可以加速离子和电子传输,并再次缓冲硅的体积变化,从而可以有效地改善硅负极的循环稳定性和倍率性能。研究结果表明,电流密度为500mA/g时,PSi@GO-2(PSi与GO质量比为10∶5)复合电极材料循环100次后,比容量仍可达到1 275 mAh/g;在电流密度为4 A/g时,该复合材料也可达到980 mAh/g的高比容量。该PSi@GO-2复合材料显示了优异的倍率性能,具有良好的应用前景。   相似文献   

18.
随着电动汽车的不断普及,锂离子电池(LIBs)的安全性备受关注。目前固态锂离子电池具有能量密度高和安全性好的优势,被认为是解决传统液态锂金属电池安全隐患和提高其循环性能的关键材料。然而,单一形式的固态电解质存在离子电导率低、界面阻抗大等问题,限制了固态锂离子电池的发展。近年来,基于无机填料与聚合物电解质的有机-无机复合电解质受到了广泛关注,有机-无机复合固态电解质兼有聚合物与无机填料的优点,一方面可以提高柔韧性,另一方面可以有效提高电池的机械性能。本文归纳总结了有机聚合物与无机金属氧化物复合固态电解质的不同类型,分析了基于不同聚合物与无机金属氧化物复合形成的有机-无机复合固态电解质对锂离子电池复合界面行为、离子电导率、电池机械性能的影响,并对复合固态电解质制备和应用过程中存在的问题和解决方法进行了梳理。最后对聚合物基复合金属氧化物固态电解质未来要重点解决的问题和发展方向进行了预测。  相似文献   

19.
钠离子电池与锂离子电池工作原理相似,却有着更低的成本和更高的安全性,因此被认为是可以替代锂离子电池的下一代储能体系。在钠离子电池中,由于正极起到提供钠离子以及决定电池能量密度的关键作用,因此对正极材料的开发和研究尤为重要。在已报道的钠离子电池正极材料中,层状过渡金属氧化物材料(NaxTMO2)因其结构简单、工作电位高和易于合成,被认为最具商业潜力。本综述以过渡金属氧化物为主线,主要集中在对O3型、P2型、P3型和双相/多相等各种层状正极氧化物材料的结构特点、改性方法、电化学性能等最新研究进展进行了总结,并根据目前存在的问题提出了该材料未来的发展方向。  相似文献   

20.
石墨烯作为一种新型的纳米材料,由于其特殊的二维单层扩展碳结构、优异的导电性、导热性、韧性和强度,在功能材料、能源等领域得到了广泛的应用。石墨烯在锂离子电池电极材料的优化和改进中受到广泛关注。如果电极使用石墨烯材料或与其他材料结合,可以充分发挥其优势,在一定程度上提高电池的性能。本文主要介绍了石墨烯在锂离子电池中的应用及其优点。分析了石墨烯材料的优缺点、重点研究方向和应用前景,为今后石墨烯电池的开发和制备提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号