首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
研究了晶界扩散处理对高Dy含量烧结Nd-Fe-B磁体性能和结构的影响。经蒸镀渗Dy晶界扩散处理,高Dy含量Nd-Fe-B磁体的矫顽力从1 713 kA/m提高至2 161 kA/m,而剩磁和最大磁能积基本没有下降,处理后磁体内Dy平均质量分数仅增加0.30%。不同深度片层分析表明,虽然磁体近表面片层比中心片层的Dy含量高,但是片层间矫顽力相差较少,而且所有片层的矫顽力均远高于未处理磁体片层的矫顽力。电子探针Dy元素面分布结果显示,在未处理高Dy含量磁体的晶界与主相中均存在Dy元素富集区且富集浓度较低,而经扩散处理后,晶界富Nd相中的Dy富集区浓度及所占比例明显提高;包括磁体芯部在内,磁体内大部分角隅处富Nd相内Dy含量明显增加,进一步提高了高Dy含量磁体内部各处的矫顽力。  相似文献   

2.
采用磁控溅射在磁体易磁化面上沉积3μm厚度的DyxFe1-x(x=30,50,80,100)合金薄膜层,并进行适当热处理制备晶界扩散型烧结钕铁硼磁体。当Fe含量为20%(原子分数)时,Dy80Fe20扩散磁体在基本不影响剩磁的情况下矫顽力能够达到15.70 kOe,接近Dy扩散磁体矫顽力,性价比更高。微观结构分析表明,重稀土元素Dy沿晶界相向磁体内部扩散的同时发生了晶格扩散,在晶粒表层生成了磁晶各向异性场更强的(Nd, Dy)2Fe14B硬磁壳层,因而磁体矫顽力增强。Dy扩散磁体经典核壳结构出现于100μm~300μm之间,且有效扩散深度小于500μm,而Dy80Fe20扩散磁体在100μm处便出现了明显的核壳且壳层可延续至500μm以上,说明Fe合金化可以有效缓解Dy在扩散磁体表面的聚集并提高有效扩散深度。在任意温度区间内,Dy80Fe20扩散磁体的αB  相似文献   

3.
DyAl合金薄膜在NdFeB基体上真空热扩渗行为的研究   总被引:1,自引:0,他引:1  
采用直流(DC)磁控溅射的方法,在烧结NdFeB磁体表面制备了DyAl合金薄膜,镀膜样品经真空热扩渗(800℃×6h)和时效处理(900℃×2.5h+490℃×5h),研究了样品的微观结构组织与磁性,并对Dy、Al元素在基体中的真空热扩渗行为进行了探讨。结果表明,随着DyAl合金薄膜厚度的增加,磁体的内禀矫顽力Hcj相应提高,内禀矫顽力Hcj提高176kA/m(2.2kOe)。通过对样品微观组织结构观察发现,Dy和Al元素沿晶界富Nd相优先扩散,大量集中分布在主相晶粒表层和富Nd相交界处,不仅改善了晶界表面浸润性,也改变了主相晶粒表层合金成分和微结构,这种晶粒表面与晶界相的改性导致烧结NdFeB磁体的内禀矫顽力Hcj提高。  相似文献   

4.
《稀土》2015,(4)
研究了晶界扩散工艺在烧结钕铁硼中的应用,采用晶界扩散渗Dy/Dy Fe合金的方法,将重稀土元素Dy扩散到烧结钕铁硼磁体内部。在高真空6×10-3Pa下,900℃×3.5 h进行扩散,再在2×102Pa,530℃×3 h下进行回火。选择性地进行追加热处理。研究了此种工艺对烧结磁体的磁性能、磁通不可逆损失和微观组织的影响。结果表明对磁钢进行晶界扩散Dy,使矫顽力增幅为15.69%。通过晶界扩散DyFe使矫顽力增幅为22.40%。晶界扩散Dy后的磁钢在160℃/1h下,磁通不可逆损失从6.3%下降到1.1%,在180℃/2h下,磁通不可逆损失从22.6%下降到6.3%。在一定的热处理条件下,重稀土元素择优分布在主相和晶界相的交界处,这种改性的晶界结构和成分提高了各向异性场,大幅提高磁体的矫顽力和耐热性。  相似文献   

5.
Nd,Dy含量对高磁能积烧结NdFeB磁性能和耐蚀性影响   总被引:3,自引:0,他引:3  
稀土Nd、Dy成分含量变化对高能积磁体磁性能和耐腐蚀性有重要影响.结果表明:当Nd含量小于12.77%(体积分数,下同)时,磁体中富Nd相过少,不能很好地去磁交换耦合作用,并导致合金烧结时收缩量少,密度过低.当Nd含量超过12.77%时,形成较多的富Nd相,能很好地隔离主相晶粒起去磁交换耦合作用,促进矫顽力提高,同时磁能积也有比较大的提高,但形成的过量晶间相增加了易腐蚀阳极含量,加剧了晶间腐蚀.添加Dy提高了主相的磁晶各向异性场,细化了主相晶粒,使磁体矫顽力增大,并且添加Dy能提高阳极过电位,有利于磁体性磁能和耐蚀性能的提高.  相似文献   

6.
李建  周磊  刘涛  程星华  喻晓军  李波 《稀土》2014,(6):45-48
主要对渗Dy晶界扩散处理后的NdFeB磁体中的Dy元素分布特性进行了研究。经过蒸镀法渗Dy处理,磁体矫顽力从1060 kA/m提高至1630 kA/m,而剩磁几乎保持不变。ICP成分分析得知,虽然渗Dy处理后Dy含量从表到里逐渐降低,但与未处理的磁体相比,在最深的中心部仍有明显的Dy含量提高。SEM能谱和EPMA面分布结果显示,大部分Dy元素主要存在于角隅处富钕相,而贫钕晶界处Dy含量从表到里逐渐减少。Dy扩散过程在富钕相晶界处更易进行,钕铁硼磁体本身的富钕相分布和晶界结构对渗Dy过程起重要作用。  相似文献   

7.
用磁控溅射法在烧结Nd-Fe-B磁体表面沉积Tb金属薄膜并进行晶界扩散处理,对比经不同热扩散温度及时间处理后的磁体组织和磁性能变化。结果表明,925℃×10 h+500℃×2 h为最佳晶界扩散工艺,可将磁体矫顽力提高到1630.9 kA·m-1,较原始磁体提升50%,同时剩磁和磁能积无明显下降,磁体仍具有较高的退磁曲线方形度。晶界扩散处理后磁体取向度有所提高,主相晶粒表面形成了明显的富Tb壳层结构,其厚度随离开磁体表面距离的增加逐渐变薄,随热扩散温度升高和时间延长逐渐增厚。长时间热扩散处理使磁体内形成沿晶界分布的连续薄层富Nd相,将主相晶粒彼此分隔,有效降低磁性相颗粒间交换耦合作用。能谱(EDS)分析表明,适当的热扩散工艺可使Tb元素扩散至磁体芯部,渗透厚度4 mm的磁体。  相似文献   

8.
《稀土》2020,(3)
晶界扩散提高烧结钕铁硼矫顽力优势明显,由于其工艺特性,对被扩散的磁体有尺寸限制,且需要专门设备和工序,使其在实际推广中受到一定限制。一些文献报道了通过直接晶界添加含Dy等重稀土合金扩散源,该工艺不再受尺寸限制,可取得类似扩散的结果,只是合金需专门制作。直接晶界添加容易得到的烧结钕铁硼磁体生产常用的原材料Dy_(80)Fe_(20)(质量分数)合金,又省略了制备Dy合金工序,实验采用的实际合金是Dy_(79.73)Fe_(20.27),同时将一级回火时间由原来的3 h加长到7 h。一方面补充了晶界相,使晶界更加清晰、完整、连续,去耦合效果更好,磁体H_(cj)提高;另一方面晶粒表面生成(Pr, Nd, Dy)_2Fe_(14)B,形成核壳结构,得到类似Dy扩散的效果,使磁体H_(cj)有效提升。H_(cj)综合提升效果优于其他文献晶界添加报告值。该工艺生产过程不再受毛坯尺寸限制,可以制得大块磁体。得到磁体性能为B_r=13.89 kGs、H_(cj)=21.32 kOe、(BH)_(max)=47.43 MGOe。对实际批产具有指导意义。  相似文献   

9.
Al对(Nd,Dy)-(Fe,Co)-B稀土永磁体磁性能和显微组织的影响   总被引:2,自引:0,他引:2  
Al可显著提高(Nd,Dy)-(Fe,Co)-B稀土永磁体的矫顽力,降低不可逆损失,δirr<5%的最高温度可达230C。显微组织分析表明,Al对显微组织的影响主要发生在富Nd相内。烧结时,富Nd液相内溶有一定量的Al。冷却时,Al在富Nd相内形成富Al区和含Al量较高的粒子。富Nd液相内的Al可改善其与φ相的湿润性,从而提高磁体的矫顽力。  相似文献   

10.
热压/热变形钕铁硼磁体具有良好的纳米晶微结构、剩磁、磁能积以及高的抗腐蚀性和热稳定性等优点,受到人们的广泛关注。近年来Dy、Tb等重稀土的价格飙升,尤其是晶界扩散方法应用于热变形磁体使其矫顽力大幅度提高,热变形钕铁硼磁体的研究重新成为当前磁性材料研究的热点。本文从热压/热变形钕铁硼磁体的制备工艺、微观结构、元素掺杂等方面进行总结。介绍了几种提高热变形钕铁硼磁性能的工艺方法,对热变形钕铁硼的Nd元素含量、热变形温度、变形量、富Nd相的形状与分布、晶粒形状与修饰等进行探讨。并对多种低熔点共晶合金晶界扩散和压力扩散进行对比,采用添加轻稀土或者是添加高熔点合金的方式使得热变形钕铁硼仍然保持较优异的磁性能。此外,利用微磁模拟和透射电镜原位加场研究对热变形钕铁硼的磁化机理、晶粒耦合机制与矫顽力机制进行总结。这些机制包括主相晶粒间的交换耦合作用、晶间相的去磁耦合作用、钉扎理论、自钉扎理论、成核理论、成分关系理论、晶粒内部缺陷钉扎作用等相关理论。  相似文献   

11.
用双合金工艺在Nd13.05Dy0.23Fe80.12B6.5铸片主合金中分别添加质量分数为3%~20%的富稀土铸锭辅合金Nd38.2Cc11.8Fe44.88Al4.12B,研究在钕铁硼永磁体中用Ce部分地取代Nd时对永磁体的磁性能的变化规律.实验结果表明,在一定的烧结及热处理工艺条件下,辅合金加入量介于8% ~ 12%(质量分数)时,磁体的内禀矫顽力和磁能积相对较高,对剩磁的影响不大.显微成分分析表明,采用双合金法,使组织中细小的颗粒状富稀土相增多,形成了更多的对矫顽力有贡献的富稀土相,并且富稀土相分布于晶界上.  相似文献   

12.
采用传统的粉末冶金方法制备了名义成分为Nd_(28)Dy_2Fe_(68.6)B_1Ga_(0.2)Nb_(0.2)的烧结钕铁硼磁体,并研究了烧结钕铁硼磁体Nd_(28)Dy_2Fe_(68.6)B_1Ga_(0.2)Nb_(0.2)晶粒的细化和磁体晶界相演化之间的关系。通过细化磁粉粒度,制备出了平均晶粒尺寸分别是8.22,4.69,3.60和3.12μm的4种磁体。结果表明,磁体平均晶粒尺寸为3.60μm时对应的磁体的磁性能最好:最大磁能积(BH)m=389.93 k J·m~(-3),内禀矫顽力Hcj=1282.79 k A·m~(-1)。从磁体的微观形貌观察发现,随着磁体平均晶粒尺寸的减小,磁体中角隅晶界相的尺寸减小,条带状晶界相的比例增大,使更多的富Nd相参与到隔断主相晶粒之间的磁交换耦合中来,磁体矫顽力提高。磁粉粒径细化之后,磁粉颗粒的形貌更加规则、均一,取向时受到的摩擦力减小,提高了磁体的剩磁和取向度。但是随着平均晶粒尺寸从3.60到3.12μm的进一步减小,富Nd相发生了团聚,且分布不均匀,导致磁体矫顽力降低;磁体中的富Nd相增多并团聚,导致了磁体在烧结过程中由于液相较多而使主相晶粒发生了偏转,而且导致了磁体取向度降低,进而导致剩磁的减小。  相似文献   

13.
对含有0~4.00%(质量分数)不等量Dy的钕铁硼基体进行了Dy晶界扩散,并分析比较其磁性能、成分以及微观结构。研究发现,所有样品在经过Dy扩散后均提升263.4~316.7 k A/m的矫顽力,且Dy质量分数均增加了0.30%~0.35%左右,与基体初始Dy含量并没有明显关联性。进一步分析发现,不同样品的矫顽力提高幅度并不正比于Dy增加量,基体Dy含量越高,单位量Dy元素的矫顽力提高效率越低。结合EPMA面分布图分析后认为,在不含Dy的基体中进行扩散的过程是晶界区域中Dy从无到有的过程,这时的矫顽力提高效率最高。  相似文献   

14.
通过晶界扩散Dy70Al10Ga20合金研究了烧结Nd-Fe-B磁体的磁性能和热稳定性能.用NIM-500C高温永磁测量仪和MLA650扫描电镜测出了磁体在扩散前后的磁性能和微观组织的变化.结果表明,在Dy70Al10Ga20合金扩散热处理后,磁体矫顽力从原始的1 080.968 kA/m显著提升到1 671.600 kA/m,提升幅度约为55 %,而剩磁下降很少. Dy、Al、Ga元素在晶界处扩散,很好地隔绝了磁交换作用,提升矫顽力. SEM图显示在扩散Dy70Al10Ga20合金后,可以很明显地看到晶粒外延层有一层灰色的壳层包覆着主相晶粒,很好地起到了隔离晶粒的磁交换作用. XRD显示主相的峰普遍往右偏移,这归因于重稀土元素Dy进入晶粒外延层形成(Nd, Dy)2Fe14B核壳结构. Dy的原子半径比Nd小,导致峰往右移.   相似文献   

15.
烧结钕铁硼微观组织对磁性能的影响   总被引:7,自引:0,他引:7  
研究了不同烧结和时效工艺的N35(16.70Nd,16.50Pr,0.30Dy,1.15B,0.30Al)和N30(10.60Nd,23.40Pr,0.30Dy,1.20B,0.30Al)两种牌号钕铁硼磁体的晶粒大小和形态对磁性能的影响。结果得出:剩磁Br随晶粒尺寸的增大有极大值,内禀矫顽力Hcj及最大磁能积BHm随晶粒尺寸的增大而降低。高磁能积磁体的最佳组织为晶粒均匀、细小、呈球形,没有聚集成块的富钕相和富硼相存在。  相似文献   

16.
Ga加入到(Nd,Dy)—(Fe,Co,Nb)—B磁体中,可显著提高其内禀矫顽力iHc,每个Ga原子加入可提高约为147kAm~(-1)。显微组织分析表明,Ga主要分布于富Nd相中,约为硬磁相中Ga含量的10~20倍。Ga主要是通过改变富Nd相的特性来影响矫顽力的。  相似文献   

17.
对比分析了我国与西方国家生产烧结钕铁硼磁体工艺差距,指出了快冷厚带制备工艺是生产烧结钕铁硼磁体关键性工艺、核心技术。分别采用快冷厚带-氢破碎-磁场成型工艺和普通铸锭-氢破碎城场成型工艺制备同一成分的烧结钕铁硼磁体。结果表明:钕铁硼快冷厚带“柱状晶”穿透整个带厚、无等轴晶区、无α—Fe相、三相(主相Nd2Fel4B、富Nd相和富B相)分布均匀、耐腐蚀性能好;氢破碎后沿富Nd相均匀破碎,主相晶粒完整;气流磨后为2.8~3.2μm单晶粉末;快冷厚带可以明显提高磁体的各项性能。  相似文献   

18.
采用涂敷方式,在烧结钕铁硼表面均匀涂敷TbH2粉末,经过不同的扩散温度处理,制备出晶界扩散磁体。研究了晶界扩散TbH2对烧结Nd-Fe-B磁体常温磁性能及高温稳定性的影响,并分析了磁体矫顽力提升的机理。常温磁性能研究表明,扩散磁体经过890 ℃+490 ℃工艺处理后性能达到最优,矫顽力从1 383 kA/m提升到1 988 kA/m。高温磁性能结果显示,扩散磁体200 ℃的矫顽力温度系数|β|比原始磁体降低0.032%/℃,磁通不可损失hirr比原始磁体降低21.47%,扩散TbH2明显提高了烧结Nd-Fe-B磁体的热稳定性。分析得出,晶界扩散TbH2磁体矫顽力提升的机理是Nd2Fe14B晶粒外延层形成了(Tb, Nd)2Fe14B核壳结构,提高了磁晶各向异性场;同时改善了磁体的微观组织结构,有效地隔绝了晶粒之间的磁交换耦合作用。   相似文献   

19.
研究了晶界扩散Dy60Co35Ga5合金对烧结钕铁硼磁体磁性能及其热稳定性的影响.随着扩散温度的升高,磁体的矫顽力(Hcj)呈现出先增加后减少的趋势,并在890 ℃扩散3 h,480 ℃回火5 h的工艺条件下,矫顽力达到较优,从1 209 kA/m提高到1 624 kA/m,磁体的剩磁只有轻微的下降,从1.38 T降低到1.32 T.高温下测试磁体的磁性能,原始磁体和890 ℃晶界扩散Dy60Co35Ga5合金磁体的矫顽力都呈下降趋势,但晶界扩散Dy60Co35Ga5合金磁体的矫顽力在高温下要明显优于原始磁体.原始磁体及890 ℃晶界扩散Dy60Co35Ga5合金磁体在不同温度下保温2 h的不可逆磁通损失分别为63 %和45 %.且DSC结果显示,890 ℃晶界扩散Dy60Co35Ga5合金磁体的居里温度(Tc)要明显高于原始磁体的居里温度,这表明晶界扩散磁体的热稳定性得到了很大的改善. XRD图谱显示,890 ℃晶界扩散磁体RE2Fe14B相的衍射峰较原始磁体向右偏移,说明Dy原子及Co原子少部分已进入主相晶粒.   相似文献   

20.
通过电弧炉冶炼合金,采用球磨制粉,在磁场下取向成型,真空烧结和热处理制备了Nd17-xRxFe76.5B6.5磁体,研究了在钕铁硼永磁体中用稀土Gd部分地代替钕时对永磁体的磁性能随Gd含量的变化。实验结果表明:在一定的烧结及热处理工艺条件下,Nd17-xRxFe76.5B6.5磁体在Gd含量小于5%(原子分数)时,Gd对磁体的剩磁和内禀矫顽力影响相对较小,当Gd含量5%时,磁体磁性能急剧下降。显微成分分析表明,在合金铸态下,Gd可抑制合金的α-Fe相的析出;在磁体中,Gd进入主相是降低磁体矫顽力的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号