首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氰化尾渣提金预处理试验研究   总被引:1,自引:0,他引:1  
针对某选矿厂高硫高砷难处理金矿石经两段焙烧—氰化浸金后产生的尾渣,根据其性质分析,采用硫酸浸铁—硫脲浸金工艺进行提金试验研究。其结果表明:在最优浸铁条件下,即浓硫酸用量45 m L、温度80℃、时间4 h、液固比4∶1,产出的浸铁渣再进行硫脲浸金,铁和金的浸出率分别达到60.37%和63.44%;这表明采用该工艺可有效地从该氰化尾渣中浸出回收金。  相似文献   

2.
某含铜金精矿焙砂中铜含量高,直接进行酸性硫脲浸出,铜会对硫脲浸出产生不利影响。针对该含铜金精矿焙砂性质特点,进行了酸浸脱铜、硫脲浸出试验研究。结果表明:经过酸浸脱铜预处理后,采用硫脲浸出工艺处理该含铜金精矿焙砂,金浸出速率较快,且金浸出率相对较高;在优化条件下,经过1 h的硫脲浸出,金浸出率可达92. 2%,银浸出率可达48. 6%;硫脲浸出工艺可实现快速高效回收金精矿焙砂中金的目的。  相似文献   

3.
冀少华  安莲英  唐明林  邹树 《黄金》2009,30(1):42-44
对某尾渣,在比较了硫脲、硫氰酸铵、硫代硫酸钠浸金效果的基础上,选择硫脲为浸出刺。试验通过优化浸出条件,确定硫脲质量浓度为15g/L、硫酸用量为55mL、液固比为3、搅拌浸出3h,金的硫脲浸出率可达到93.50%。试验还考察了硫脲溶液循环使用效果,可在一定程度上降低浸金过程中硫脲的消耗。  相似文献   

4.
磁场强化硫脲浸金试验研究   总被引:9,自引:2,他引:7  
邱廷省  罗仙平 《黄金》1999,20(9):32-34
在分析传统硫脲浸金技术存在的主要问题基础上,提出了采用磁场强化硫脲浸金过程,分析了浸金时间、硫脲用量、酸度以及磁化方式和磁化时间对金浸出率的影响,进行了常规硫脲浸金和磁场强化硫脲浸金的对比试验。  相似文献   

5.
论证了硫脲溶金的机理及主要影响因素, 提出了提高硫脲浸金效率的方法和硫脲法提金的应用范围, 较详细地讨论了硫脲铁板浸置工艺、硫脲浸出矿浆直接电积工艺、活性炭吸附法、离子交换树脂吸附法和金属置换法从硫脲浸金液中回收金的工艺特点及一般规律, 并简述了硫脲浸出剂的毒性和硫脲提金的环保问题。   相似文献   

6.
论证了硫脲溶金的机理及主要影响因素,提出了提高硫脲浸金效率的方法和硫脲法提金的应用范围,较详细地讨论了硫脲铁板浸置工艺、硫脲浸出矿浆直接电积工艺、活性炭吸附法、离子交换树脂吸附法和金属置换法从硫脲浸金液中回收金的工艺特点及一般规律,并简述了硫脲浸出剂的毒性和硫脲提金的环保问题。  相似文献   

7.
某微细浸染型金矿化学分析结果显示,金品位为3.51×10-6,Si O2含量较高(占71.88%),有机碳质量分数高达2.51%,XRD和金物相分析可知,矿石中主要矿物为石英、方解石及硫化矿,金矿石主要以微细粒浸染型为主,或包裹于石英、硅酸盐、硫化矿及碳酸盐矿物中。采用焙烧—硫脲或硫氰酸铵单体系浸出时,金浸出率较低;采用焙烧—硫脲、硫氰酸铵混合体系浸出时,可获得较好的浸出率。通过析因试验研究硫氰酸铵、硫脲(Tu)和硫酸铁对金浸出的影响,结果表明硫酸铁和硫氰酸铵相互作用显著。通过优化浸出时间、p H值和液固比,得到混合体系浸金的较优条件。结果表明:在焙烧温度为600℃、焙烧时间为60 min、p H=1.06、硫酸铁用量为14 kg/t、硫氰酸铵用量为10 kg/t、硫脲用量为2 kg/t、浸出时间为7 h和液固比为3∶1的条件下,可获得75.03%的金浸出率。  相似文献   

8.
针对毕力赫金矿矿石性质,考察了环保型浸金剂与氰化钠的浸出效果。结果表明:在相同工艺条件下,环保型浸金剂的浸金指标与氰化钠相当,且生产成本相差不大;磨矿细度-0.074 mm占90%,环保型浸金剂用量1.2 kg/t,浸出时间48 h时,金浸出率可达到92.59%。该环保型浸金剂浸出率高,生产成本低,可以替代氰化钠进行浸金作业,具有良好的应用前景。  相似文献   

9.
硫脲炭浸法从低品位微细铁帽金矿提金工艺研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用低温焙烧—酸性硫脲—炭浸法从低品位微细拉包裹型难浸铁帽金矿中提取金,经小型连续试验获得理怒的技术指标:焙砂金品位为3.20g/t(原矿为3.01g/t),金浸出率可达85.47%,炭吸附率为99.32%,而硫脲用量仅为0.8 kg/t。该工艺不存在环境污染问题。  相似文献   

10.
陈汝璨  郭学益  张磊  雷勋惠  段小阳  秦红 《黄金》2023,(5):37-42+51
黄金具有重要战略意义和经济价值,目前工业上主要采用氰化法提金,但氰化法生产周期长,所用氰化物剧毒,若管理不善,存在潜在环境污染风险。以某黄金冶炼厂含金酸渣为研究对象,进行了硫脲体系浸金研究。结果表明:在常规强化搅拌硫脲浸出条件下,含金酸渣金浸出率仅83.17%;在超细磨强化硫脲浸出条件下,含金酸渣金浸出率达89%;推荐最优试验方案为强化搅拌浸出+一段超细磨浸出一次+二段超细磨浸出三次+强化搅拌浸出,该方案含金酸渣金浸出率达95.04%,可实现含金酸渣中金的清洁深度提取,为非氰提金工艺工业化应用提供理论和技术支持。  相似文献   

11.
硫脲浸取某含金矿石的试验研究   总被引:1,自引:0,他引:1  
对经过焙烧,且钴、铜、镍、钼、铋等有用元素基本已浸出的某含金多金属矿石浸渣,进行了硫脲浸金试验。试验结果表明。当硫脲用量为8kg/t,浓硫酸用量20L/t,浸出时间为4h,金的浸出率达90%以上。  相似文献   

12.
氰化尾渣硫脲浸金试验   总被引:1,自引:0,他引:1       下载免费PDF全文
采用硫脲法浸金工艺对某难处理氰化尾渣进行浸出试验。结果表明,在液固比3∶1,pH=1~1.5,硫脲浓度2kg/t,温度60℃,浸出6h时,金浸出率可达82.30%。  相似文献   

13.
为了回收河北某矿石中的元素金,对该矿矿石进行了氰化浸金及混汞试验研究。在原矿金品位23.6 g/t,磨矿细度-200目含量为91.2%,NaCN用量为2.5 kg/t,浸出时间24h条件下,获得了浸渣金品位0.403 g/t,金浸出率为98.29%的氰化浸出指标。混汞金回收率为48.86%。  相似文献   

14.
王硕 《黄金科学技术》2017,25(4):122-127
采用环保型非氰浸金剂,结合全泥炭浆法浸出工艺,对甘肃某金矿的浸金工艺进行了研究。具体考察了溶氧量、矿浆浓度、pH值、矿物粒度、浸金剂用量、浸出温度和浸出时间对金浸出效果的影响,采用原子吸收分光光度计测定原矿和尾矿中的金含量,通过计算金浸出率来确定适宜的浸金工艺条件。结果表明:综合考虑经济和浸出率等因素,在矿浆浓度为40%、pH=11~12、浸金剂用量为300 g/t矿样、浸出温度为20~40 ℃及浸金时间为24 h的条件下,用自来水作溶剂在敞开环境下浸金,浸出效率最佳,金的浸出率可达80%。  相似文献   

15.
某阳极泥原料采用选矿工艺提取贵金属后,金的回收率为81%~82%,尾矿中金的品位在0. 2%~0. 3%之间。由于尾矿中金含量仍然较高,研究新的提金工艺显得极为重要。为了高效回收尾矿中的金,采用氯酸钠-氯化钠溶液体系浸出尾矿,并对浸金工艺进行了系统优化。实验表明,当矿浆浓度为25%、氯酸钠的用量为16 g/L、氯化钠的用量为1. 0 mol/L、硫酸的用量为3 mol/L、浸出温度为80℃、浸出时间为2 h,氯化浸金效果最好,金的最佳浸出率为99. 16%。通过氯化浸金工艺,实现了尾矿中金的高效回收,并且浸出液可直接通过还原剂还原成粗金粉,工艺成本低、高效环保,可用于企业规模化生产。  相似文献   

16.
张世镖 《黄金》2020,41(4):71-74
某黄金矿山生物氧化-氰化炭浸工艺产生的氰化尾渣中金品位较高,为2. 40~3. 60 g/t。试验考察了焙烧氧化-氰化浸出工艺回收金的可行性。结果表明:在焙烧温度500℃、弱氧化气氛下焙烧120 min,获得的焙砂在氧化钙用量15 kg/t、矿浆浓度33%、氰化钠用量1. 0 kg/t、浸出时间24 h条件下进行氰化浸出,浸渣产率为88. 80%,金浸出率在94. 92%以上;采用焙烧氧化-氰化浸出工艺回收氰化尾渣中的金是可行的。该研究为氰化尾渣中金的回收利用提供数据参考。  相似文献   

17.
对泉山金矿氰化尾矿进行了焙烧预处理—超声波强化硫脲浸金试验研究。其结果表明:该尾矿经焙烧后硫脲浸出,金的最高浸出率比未焙烧时提高了45.12%;尾矿焙烧后再经超声波强化硫脲浸出,金的最高浸出率进一步提高了9.6%,达到77.5%,且大大缩短了浸出时间,提高了浸金效率。  相似文献   

18.
硫脲浸金法因具有高效、环保、浸出速度快等优点,是一种很有发展前景的非氰提金法,而生物氧化预处理—硫脲浸金工艺以其条件温和、环境友好、浸金效率高同样倍受关注。详细介绍了硫脲浸金的基本原理、影响因素和浸金液中金的回收方法,以及生物氧化预处理—硫脲浸金联合工艺,并对硫脲浸金的发展进行了展望。  相似文献   

19.
针对贵州某低硫氧化型金矿石现场金浸出率低的问题,进行了全泥氰化浸出和柱浸试验研究,考察了全泥氰化石灰用量、氰化钠质量分数、磨矿细度及助浸剂等影响因素。结果表明:在最佳试验条件下,采用新型助浸剂ZW-1,全泥氰化金浸出率达到92. 83%,比现场金浸出率80%左右显著提高;柱浸适宜粒级为-30 mm,金浸出率为89. 24%;全泥氰化浸出工艺适宜处理该矿石,其金浸出率比柱浸金浸出率高3. 59百分点,浸渣金品位较低,为0. 07 g/t,且浸出时间较短。  相似文献   

20.
采用焙烧-酸浸-氰化工艺综合回收复杂金精矿中的金、银、铜.结果表明,焙烧温度、焙烧时间、焙烧添加剂种类和用量对金、银、铜浸出率影响显著.实验确定了较优工艺条件为:焙烧添加剂NaOH用量为6 %,温度630 ℃,焙烧时间3 h,硫酸浓度1 mol/L,酸浸液固体积质量比5:1,酸浸温度50 ℃,酸浸4 h,氰化纳浓度3 ‰,氰化浸出液固体积质量比5:1,常温氰化72 h.在上述条件下,金、银、铜浸出率分别达到93.53 %、75.37 %、94.23 %.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号