首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 130 毫秒
1.
从废高温镍钴合金中浸出镍和钴的试验研究   总被引:1,自引:0,他引:1  
研究了采用"苏打焙烧-碱浸出铝、钼-氯气浸出钴、镍、铁等-TBP萃取除铁-中和水解除铬-P204萃取除微量杂质-N235萃取分离镍、钴"工艺处理废高温镍钴合金,重点考察了从废镍钴合金中浸出镍和钴,讨论了苏打焙烧温度和碱浓度对铝、钼浸出率的影响,碱浸渣氯气浸出电位、浸出时间、废合金粒度、添加剂的加入等因素对镍、钴浸出率的影响.试验确定了从废高温镍钴合金中浸出镍、钴的工艺优化条件.综合条件下,镍、钴平均浸出率分别为99.30%和97.67%,浸出渣中镍、钴质量分数平均为0.51%和0.44%.  相似文献   

2.
P507萃取分离镍钴工艺研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以湿法工艺处理镍基高温合金废料过程中产生的镍钴净化富集溶液为原料,以P507为萃取剂,使用连续化逆流萃取分离设备——混合澄清槽,采用"P507六级萃取钴—六级洗涤—四级反萃"连续萃取工艺,获得了镍富集溶液和钴富集溶液,其中镍富集液中镍钴浓度比达8 000、钴富集液中钴镍浓度比达12 576,实现了镍钴的有效分离。  相似文献   

3.
本工艺使用商业化的萃取剂,利用动力学影响因子,进行协同萃取。它适用于含Ni低,含杂质(如镁和锰)高的浸出液。可用于从钴溶液中分离镍,无须预先净化杂质,如先生产混合氢氧化物沉淀再浸出。该工艺适用于来自红土矿和硫化矿的宽范围含镍钴浸出液,在操作和投资成本上具有优势。对工艺过程举例进行描述,对比现有技术,进行了潜在商业优势的比较。  相似文献   

4.
正2017001一种浸出古巴镍钴原料的方法一种浸出古巴镍钴原料的方法,涉及一种浸出古巴镍钴原料提取镍、钴、铜的湿法冶金方法。其特征在于浸出过程将古巴镍钴原料与硫酸溶液浆化入釜,进行加温、加压、氧化浸出,将得到的浸出液过滤,进行萃取分离铜、镍、钴。采用本发明的一种浸出古巴镍钴原料的方法,原料中的镍、铜、钴的浸出率≥99.1%,加压氧化浸出液可采用P204、P507萃  相似文献   

5.
镍精矿加压酸浸新工艺研究   总被引:4,自引:0,他引:4  
研究了金川镍精矿加压一步全浸镍、钴、铜新工艺,浸出液中和除铜后萃取分离镍钴,镍、钴、铜的浸出率可分别达到99.5%、98%和98%以上。该工艺与硫酸选择性浸出相比具有金属浸出率高、分离彻底、易分别回收等优点。  相似文献   

6.
<正> 金川转炉渣提钴流程,可大幅度提高钴的回收率。转炉渣经电炉贫化、钴冰铜缓冷、选矿、钴合金加压浸出、萃取除杂质及镍钴分离等工序的处理,获得纯净的硫酸镍溶液。由于硫酸镍溶液中含有少量的有机萃取剂,给下一步提镍工序带来了困难。为充分利用金川镍矿资源,加速发展我国镍钴  相似文献   

7.
<正> 中国科学院化工冶金研究所与天津市熔炼厂合作研究的P-204萃取除杂,季胺氯化物萃取分离钴镍处理含钴、镍废合金的工艺已于四月十一日在天津通过鉴定。鉴定意见认为:实际应用季胺来分离镍钴在国内实属首创。季胺萃取分离钴镍酸碱消耗少,对温度、溶液中氯离子浓度及pH值要求均不  相似文献   

8.
废旧高温合金中硫酸浸出镍钴的动力学研究   总被引:1,自引:0,他引:1  
以废旧高温合金为研究对象,采用常压硫酸浸出回收镍钴,并主要针对硫酸浸出废旧高温合金中镍钴过程的动力学进行研究,实验条件为液固比400∶1,硫酸浓度10%~25%,温度为55~75℃。研究结果表明:物料粒度、硫酸浓度、反应温度等因素对镍钴浸出率有较大的影响,同时确定了废旧高温合金浸出镍钴的过程属于典型的多相液-固区域反应模型,在实验条件范围内,其相应的动力学方程可以用1-2/3a-(1-a)2/3=Kpt来表示,硫酸浸出镍和钴的表观活化能分别为13.37和21.59 kJ·mol-1,且其反应过程受内扩散控制。从废旧高温合金中浸出镍钴动力学的研究为以后工业实践中处理回收废旧高温合金提供一定的借鉴。  相似文献   

9.
分别采用氧气氧化法和双氧水氧化法净化某钴合金浸出液,比较了两种方法除铁的效果。氧气氧化法除铁渣钴、镍钴损失大;双氧水氧化法除铁钴镍损失很小;扩大试验结果表明,此工艺有良好的工业应用前景。  相似文献   

10.
氧化锰矿直接还原浸出溶液的净化电积   总被引:2,自引:1,他引:1  
宁孝生 《中国锰业》1996,14(3):32-34
针对氧化锰矿还原浸出反应的特点,探讨了浸出液中铜、钴、镍和胶体硫的除去方法并提出了溶液净化工艺.净化液的锰电积结果表明:金属锰的杂质硫含量最低可降至001%以下.  相似文献   

11.
以某厂镍电解生产净化工序氯气除钴产生的钴渣为氧化剂,除去转炉渣浸出液电积脱铜后液中的钴,实现转炉渣富钴镍浸出液中镍钴分离。结果表明,在钴渣含三价镍与钴量摩尔比为4~5,反应温度70~80℃,反应时间120min,终点pH 4.8~5的条件下,分离富集钴后的二次钴渣镍钴比可降为1~1.5,可用于生产钴产品。除钴后液可直接并入镍电解系统。  相似文献   

12.
从废弃炉渣中分离回收钴、镍   总被引:1,自引:0,他引:1  
梁妹 《湿法冶金》2007,26(3):157-162
用酸(硫酸+少量硝酸)浸出废弃炉渣,其中的Cu、Ni浸出率达99%以上,Co浸出率为87%。浸出液用铁粉置换法分离铜、黄钠铁矾法除铁、NaF法除钙镁、P204深度除杂、P507分离镍钴,杂质去除率达99.5%以上,Ni、Co回收率均超过94%。  相似文献   

13.
Extraction of cobalt from complex ore flotation concentrates obtained from the Blackbird Mine. Idaho. USA is reviewed. After flotation of a primary copper concentrate, a bulk concentrate is recovered containing major amounts of cobalt, arsenic, and iron, with minor amounts of copper and nickel. This concentrate can be upgraded during flotation by removing iron, but with considerable cobalt loss. Chemical extraction difficulties are caused by the high arsenic and iron content of the concentrate. The historical approach, including a short lived plant, has been pressure oxidative leaching followed by ferric arsenate precipitation, solution purification, and cobalt electrowinning. Smelting and sulfation roasting followed by leaching are unsatisfactory but also discussed. The most recent studies, showing some promise, have been on oxygen-calcium chloride leaching and on biooxidative leaching at moderate pH with simultaneous iron hydrolysis and ferric arsenate precipitation.  相似文献   

14.
从氧化钴矿石中提取钴的试验研究   总被引:2,自引:0,他引:2  
研究了从氧化钴矿石中回收钴.通过两段浸出,浸出渣中钴质量分数小于0.5%,钴浸出率达99%.通过黄钾铁钒法除铁,氟化钠法除钙、镁,亚硫酸钠法除铜,P204串级萃取法进一步去除杂质Fe、Ca、Mg、Cu、Zn、Mn、Pb、As等,P507萃取分离钴镍,最后通过沉淀得草酸钴产品,产品纯度符合要求.  相似文献   

15.
The purification of cobalt chloride solutions from iron, copper and nickel by mixtures of extractants have been conducted. The composition of solutions obtained after dissolution of cobalt concentrate was in g/1: 150-180 Co, 12-18 Ni, 1-2 Cu, 5-8 Fe, and 10-15 HCl. Monocarboxylic acids with straight or branched chains were used as one of the components of extraction mixture and as the solvent. For purification of solutions from iron, 0.2-0.3 M solutions of tertiary amines in monocarboxylic acids were used. A mixture of monocarboxylic acids and aliphatic non-chelating aldoximes (heptaloxime) was used for purification of solutions from copper. Aldoximes concentration in the mixture was 0.2-0.25 M. For nickel extraction 1.5-2.0 M solution of heptaloxime in monocarboxylic acids was used. Stripping was conducted by hydrochloric acid solution 5-15 g/ 1.

The purification of cobalt solutions from impurities by these extractants was effective. Thus, the separation coefficients are for iron/cobalt - 5 x 104, for copper/cobalt ~ 5 x 10', and for nickel/cobalt -100. The extraction scheme has been tested on industrial scale. The results have supported the high efficiency of this purification. Thus, metallic cobalt obtained from the purified solutions by electrolysis had the composition in %: 99.98 Co; 0.003 Ni; 0.001 Cu; 0.003 Fe.  相似文献   

16.
赵艳  彭犇  郭敏  张梅 《工程科学学报》2012,34(6):632-638
采用微波水热盐酸浸出方法对腐泥土型红土镍矿提取镍钴进行了研究,详细探讨了焙烧预处理、微波水热浸出温度和浸出时间对镍钴浸出率的影响.对于300℃焙烧预处理后的红土镍矿,微波水热温度为50℃,浸出时间为1 h时,镍的浸出率高达93.65%,钴的浸出率为87.86%.红土镍矿的微波水热浸出体系与普通水热浸出体系相比,镍和钴的浸出效果更好.研究表明,扩散过程是镍、钴浸出过程的主要限制环节.   相似文献   

17.
Abstract

This paper presents the results of research and development work on processing of alnico scrap, a secondary resource of nickel and cobalt, generated during the manufacturing of alnico magnets. The scrap contains 8-10% nickel, 10-12% cobalt, 32-50% of iron, 8-10% aluminium, 2% copper and remaining silica. Various processes such as acid leaching, aqueous chlorine leaching, salt roasting and cupric chloride leaching were studied in detail. Of these cupric chloride leaching was found to be most effective with respect to recovery and purity. It has been possible to obtain pure nickel and cobalt salts by cupric chloride leaching of the scrap, solvent extraction and precipitation of the salts. The overall recovery by the above process was almost 99%.  相似文献   

18.
废弃SCR脱硝催化剂是一种危险废物,同时又含有多种有价成分。通过分析国内外废弃催化剂资源化利用的主要方法、原理、途径及优缺点,得到能够充分回收钒钨钛资源的有效方法主要为废弃SCR脱硝催化剂浸出-浸出液净化分离回收钒钨-浸出渣酸洗焙烧回收钛,其中浸出过程比较适合采用碱式焙烧-水浸法;浸出液净化分离过程比较适合采用化学沉淀法或溶剂萃取结合化学沉淀法。此外,展望了废弃SCR脱硝催化剂资源化利用的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号