首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
以B4C粉、Ti粉、CrO3粉以及Al粉为原料,采用超重力下自挤压辅助燃烧合成技术,以快速凝固方式制备出不同绝热燃烧温度的TiC-TiB2复合陶瓷.XRD、FESEM与EDS结果表明,TiC-TiB2复合陶瓷基体主要由片状的TiB2晶粒构成,同时在TiB2基体间还分布着少量不规则的TiC,(Ti,Cr,Al)C1-x及Al2O3残余夹杂物.随着绝热燃烧温度的升高,Al2O3的含量先减少后增加,(Ti,Cr,Al) C1-x的含量逐渐增加,TiB2与TiC的含量基本不变.  相似文献   

2.
在不同粒度的Al2O3微粉基体中加入SiO2纳米粉,通过特殊的粉体分散及热压铸方法制备出Al2O3/SiO2纳米复合陶瓷型芯.研究了物料组成对Al2O3/SiO2纳米复合陶瓷型芯烧制特性的影响.结果表明加入SiO2纳米粉后,改善了材料的流动性,并使陶瓷型芯的抗弯强度提高,烧结温度降低;在不同物料组成的纳米复合陶瓷型芯中,粗细物料搭配的基体其抗弯强度较高,并得到了最佳的物料组成及烧结制度.  相似文献   

3.
ZrB2具有许多优异性能,应用非常广泛。采用共沉淀法成功合成包裹型A1(OH)3-Y(OH)3/ZrB2复合粉体,再通过600℃煅烧得到了包裹型Al2O3-Y2O3/ZrB2复合粉体。包裹型Al2O3-Y2O3-ZrB2粉体在1 700℃、20MPa、4min的放电等离子烧结(SPS)条件下烧结致密化制备包裹型ZrB2-YAG-Al2 O3陶瓷。复相陶瓷的氧化增重随着氧化温度升高而增大,随着YAG-Al2O3含量增大而减小。  相似文献   

4.
研究了压力、热压温度和保温时间等工艺因素对纳米SiC Al2 O3/TiC系新型陶瓷刀具材料的抗弯强度、断裂韧性和硬度的影响。结果表明 ,对于纳米SiC Al2 O3/TiC系陶瓷复合材料 ,在压力为 30MPa ,热压温度为 170 0℃ ,保温时间为 60min时 ,材料的性能最好  相似文献   

5.
将金属Al、Al3Ti和TiC以AlTiC中间合金的形式以及ZrO2颗粒共同引入Al2O3基体材料中,热压制备了Al2O3/TiC/ZrO2/AlN复合材料.在此基础上,添加(体积分数)1%透辉石作为烧结助剂,以实现复合材料的液相烧结并促进其致密化程度.复合材料在烧结过程中有新相AlN生成;同时Al、TiC以及Al3Ti释放的Ti原子发生原子重组生成Al2Ti4C.对热压后材料的硬度、断裂韧度和抗弯强度进行了测试和分析;探讨了透辉石对材料致密化程度及力学性能的影响效果;研究了复合材料断面断裂方式的变化对其力学性能的影响;并对AlTiC中间合金的细化特性进行了分析.  相似文献   

6.
汤道华 《江苏冶金》2002,30(3):40-41
介绍了高铬铸铁主要性能,特点和加工难度,对比分析了Al2O3 TiC混合陶瓷刀具材料成分,温度,硬度和耐用度的关系;优化选择了该刀具加工高铬铸铁的切削参数。  相似文献   

7.
以铁尾矿合成的SiC粉为原料,Y2O3和Al2O3为烧结助剂,常压烧结制备SiC-Y3Al5O12(YAG)复相陶瓷.通过X射线衍射及扫描电镜等测定材料的相组成和显微结构,并分析烧结物的致密化过程,研究其结构和力学性能.结果表明:制备材料适宜的烧结温度为1 800-1 850℃.烧成产物主要物相为SiC,其余为YAG和少量FexSiy随烧结温度的升高,Y2O3和Al2O3生成的YAG相逐渐增加且稳定存在.细小的YAG颗粒弥散在基体周围,并逐渐增多聚集把短柱状SiC晶粒粘结在一起起到促进烧结的作用.随烧结温度的升高,材料的显气孔率降低,而体积密度、硬度和抗压强度均增加.  相似文献   

8.
采用固相反应法制备(1-x)Sr Ti O3-x Al2O3(摩尔分数x=0.30~0.50)系列微波介质陶瓷材料。通过设计实验改变Al2O3的添加量和烧结温度来研究体系的相组成、显微结构及介电性能之间的变化规律。结果表明:随着Al2O3添加量的增多,陶瓷体系的介电常数呈减小趋势;在1390~1450℃下,保温4h烧结时制备的(1-x)Sr Ti O3-x Al2O3陶瓷的致密度随烧结温度的变化不大,均在94%以上。当烧结温度为1450℃,x=0.5时,所制备的陶瓷体系具有较好的介电性能:介电常数约为77.57,介电损耗小于4.4×10-4,致密度约为98%。  相似文献   

9.
中国科学院金属研究所近日向社会推出高韧性耐磨损陶瓷复合刀具材料新产品。据介绍 ,本发明的目的在于提供一种金属陶瓷复合材料 ,使其既具有高的硬度又具有较强的韧性 ,且增韧效果稳定。高韧性耐磨金属 陶瓷复合刀具材料是针对石油化工领域各种合成树脂 (其中包括聚乙烯、聚丙烯、聚脂和橡胶等 )的切粒加工工序的需要 ,自行设计的新型复合刀具材料。其突出特点包括 :采用无钴的金属结合相 ;采用Ni Cr Al Ti金属结合相与TiC复合使该材料同时发挥Ni Cr Al合金的耐热性、TiC的耐磨性和Ni Ti马氏体相变增韧效果等高韧性耐磨损陶瓷复合刀…  相似文献   

10.
(ZrO2)0.96(Y2O3)0.03(Al2O3)0.01陶瓷的制备及性能研究   总被引:1,自引:0,他引:1  
采用化学共沉淀法制备(ZrO2)0.96(Y2O3)0.03(Al2O3)0.01的粉末, 在不同的升温速率、不同的烧结时间和不同的烧结温度等烧结工艺下制备出(ZrO2)0.96(Y2O3)0.03(Al2O3)0.01三相体系复合陶瓷. 经研究发现, 在升温速率和降温速率均为5 ℃·min^-1 的烧结制度下, 1550 ℃烧结时, 可以得到抗弯强度达998 MPa, 抗热震次数达33次, 相对密度达96%和电性能较好的烧结体.  相似文献   

11.
TiC基对称成分功能梯度材料残余热应力分析   总被引:2,自引:0,他引:2  
采用有限元方法对TiC基对称成分功能梯度材料 (SCFGM)中的残余热应力进行了理论计算。在此基础上 ,采用热压烧结工艺制备了表面无宏观缺陷的TiC(Mo ,Ni) x/TiC(Mo ,Ni) y/TiC(Mo ,Ni) x对称成分功能梯度材料。力学性能测试表明 ,对称成分功能梯度材料较之相应单一组分材料而言 ,在抗弯强度、断裂韧性等力学性能方面有较大程度的提高。这也表明 ,通过材料设计的手段可以改善材料的某些力学性能  相似文献   

12.
通过固相反应制备出BaSn1-xSbxO3陶瓷粉末,并将其用醋酸铜溶液浸泡后烘干,随后通过固相反应法制备出BaSn1-xSbxO3CuO复合粉末,然后与Ag粉机械混合制备Ag/BaSn1-xSbxO3CuO复合粉末。同时,采用机械混粉法制备Ag/BaSn1-xSbxO3CuO复合粉末。两种工艺制备的粉末均采用相同烧结工艺制备Ag/BaSn1-xSbxO3CuO触头材料,对所制备触头材料的密度、抗弯强度和电阻率等进行比较。结果表明:采用醋酸铜溶液浸泡BaSn1-xSbxO3陶瓷粉末制备BaSn1-xSbxO3CuO复合粉末,可使CuO更均匀地分布在BaSn1-xSbxO3陶瓷粉末中,极大地促进了粉末的烧结,改善了材料的显微组织,提高了Ag/BaSn1-xSbxO3CuO触头材料的综合性能。  相似文献   

13.
研究了复合添加剂MnO2、MgO和Y2O3对Al2O3陶瓷烧结性和抗热震性的影响.试验结果表明:在复合添加剂中引入MgO和Y2O3大幅度提高了Al2O3陶瓷的致密度,促进了陶瓷的烧结,提高了材料的强度.Al2O3陶瓷的抗热震性能也得到提高,当MgO和Y2O3的含量为0.5%时,Al2O3陶瓷的临界热震温差在300℃左右,抗热震性能大大提高;继续增加MgO和Y2O3的含量,其抗热震性有所降低.添加复合添加剂的Al2O3陶瓷的抗热震性受到细晶强化和气孔的共同控制,对抗热震性提高的主要贡献为细晶强化,但气孔也会影响其抗热震性.  相似文献   

14.
以α-Al2O3为骨料、羧甲基纤维素为造孔剂和粘结剂、Cu O-Ti O2为烧结助剂制备单管式氧化铝陶瓷支撑体,对支撑体孔隙率与抗折强度进行测试,并用X线衍射仪(XRD)和扫描电镜(SEM)对支撑体的物相与微观结构进行分析与观察,研究升温速率、保温时间和烧结温度等烧结工艺参数对支撑体性能的影响。结果表明:在高温烧结过程中形成Al2Ti O5、尖晶石型Cu Al2O4和铜铁矿型Cu Al O2,可促进烧结,其中Al2O3与Ti O2之间发生固溶反应形成Al2Ti O5相起主导作用;在30~200,200~350,350~800,800~1 200℃这4个温度范围内,分别以12,6,12和4℃/min的升温速率匀速升温,并在350和1 200℃分别保温0.5和2 h,最后随炉冷却,制得的支撑体具有良好的孔隙率、抗折强度和微观结构,孔隙率达到30.98%,抗折强度为104.88 MPa。  相似文献   

15.
通过在Ti、Al粉末中使用少量TiH2发泡剂替代纯Ti粉,制备具有高孔隙率特征的TiAl基多孔材料。探索适合的粉末复合方法,研究不同含量TiH2、不同Ti、Al粉末成分配比以及烧结工艺对材料孔隙率的影响。结果表明:n(Ti)∶n(Al)=1∶2,TiH2质量比为5%,真空反应烧结温度620℃、保温时间4 h条件下材料的孔隙率最大,可达到63.5%。材料的孔隙率随TiH2含量的增多、Al含量的增多先增大后逐渐减小,随烧结温度的升高逐渐减小,且多为连通型孔隙。烧结后多孔材料热导率为2~14 W·(m·K)-1。不同TiH2含量TiAl基金属间化合物抗压强度在6~40 MPa之间。  相似文献   

16.
金属间化合物/陶瓷基复合材料发展现状与趋势   总被引:1,自引:0,他引:1  
金属间化合物/陶瓷基复合材料是近年内发展起来的一种新型复合材料,其发展与金属间化合物和高技术陶瓷的发展密切相关.利用金属间化合物的性能介于金属和陶瓷之间的特点,制备金属间化合物/陶瓷基复合材料,能使金属和陶瓷各自的缺点通过彼此的优点所弥补.该文简要介绍了Ni-Al/Al2O3、Fe-Al/Al2O3、Ni-Al/TiC、FeAl/TiC、FeAl/WC和Ni3-Al/WC等复合材料的发展现状以及金属间化合物/陶瓷基复合材料未来的发展趋势.  相似文献   

17.
以Si3N4、Al N、Al2O3和c BN为原材料,采用放电等离子烧结,在氮气、氩气和真空三种不同烧结气氛下制备Si Al ON/c BN陶瓷复合材料.通过XRD、SEM及力学性能评估等手段研究了材料的物相组成、显微组织、体积密度、硬度以及断裂韧性等性能.结果表明:真空气氛下制备的Si Al ON/c BN陶瓷复合材料显微组织相对致密,具有较高的体积密度、硬度和断裂韧性.  相似文献   

18.
以钼粉及氧化锆粉为原料,采用不同的烧结工艺参数,在常压氩气气氛下烧结制备50%Mo-ZrO2金属陶瓷。采用四电极法测量该金属陶瓷的高温电导率,在1 580℃下进行钢液和碱性熔渣侵蚀实验。结果表明:在烧结温度为1 600~1 650℃,保温时间为2~4 h的条件下,随保温时间延长或烧结温度升高,烧结体更加致密,孔隙率下降;因而金属陶瓷的电导率提高,耐钢液和熔渣侵蚀性增强;在1 600℃、保温4 h条件下烧结的试样密度最大(6.49 g/cm3),高温电导率最高(1 600℃下的电导率为101 S/cm),耐钢液和熔渣侵蚀能力最强。钢液对金属陶瓷的侵蚀主要为Fe和Mo的相互溶蚀,熔渣对金属陶瓷的侵蚀主要作用于ZrO2陶瓷相,熔渣中的Al2O3取代金属陶瓷中的ZrO2。熔渣侵蚀过程中,CaO与金属陶瓷中的ZrO2发生反应生成高熔点CaZrO3相,阻止熔渣对金属陶瓷的进一步侵蚀。  相似文献   

19.
日本无机材料国家研究院研制了一种在常压下烧结后能获得99%致密度的TiC-Al_2O_3材料。 该烧结材料有极好的强度、硬度和韧性,可用于切削刀具。烧结材料的制备工艺为:将TiC和Al_2O_3粉末以1:3的比例进行混合,并添加少量  相似文献   

20.
采用高温氧化的方法制备出纳米NiAl2O4圈层包覆Al2O3粉体.在纳米Al2O3粉体表面包覆一层金属Ni,在1 350℃高温下焙烧Ni/Al2O3复合粉体得到纳米NiAl2O4圈层包覆Al2O3粉体.利用TEM对Ni/Al2O3复合粉体进行观察,发现Ni/Al2O3复合粉体颗粒呈球形,大小为50~60 nm;Ni/Al2O3复合粉体的DTA分析结果表明,Ni/Al2O3复合粉体在900和1 300℃时有新相生成,经XRD检测,新相分别为NiO和NiAl2O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号