首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
康荻娜  庞玉华  罗远  孙琦  林鹏程  刘东 《钢铁》2020,55(9):104-110
 为了建立可以满足计算精度的F45MnVS钢高温塑性变形本构关系模型,利用Gleeble-3500试验机完成了热模拟等温压缩试验,获得了变形温度为800~1 000 ℃、应变速率为0.01~10 s-1、变形量为0~70%时的金属流变行为。结果表明,应力随应变的变化具有明显动态再结晶特征,应力随变形温度的降低、应变速率的增加而增大;基于对Arrhenius方程和Zener-Hollomon参数的解析,获得了热变形激活能Q,建立了峰值应力本构模型;基于应力-位错关系和动态再结晶动力学,建立了加工硬化-动态回复和动态再结晶两个阶段的机理型本构模型,用于描述不同变形温度和应变速率时应力与应变之间的关系;采用所建模型完成了不同变形条件的应力应变预测,与试验结果的对比分析表明,相关系数为0.997,吻合度高。  相似文献   

2.
通过分析冷镦钢SCM435在温度为950~1150℃、应变速率为0.1~1s-1范围内发生动态再结晶的热/力模拟试验数据,利用其应变硬化速率θ与流变应力σ的θ-σ曲线,准确确定了其发生动态再结晶的临界应变εc、峰值应变εp、临界应力σc和峰值应力σp,用应力-应变(σ-ε)曲线方法计算SCM435钢的动态再结晶Avrami动力学曲线和时间指数n.结果表明:SCM435钢发生动态再结晶的临界应变与峰值应变的平均比值εc/εp=0.73,动态再结晶Avrami时间指数平均值n=1.91;在温度950~1150℃,应变速率0.1~1s-1范围内,应变速率是SCM435钢的动态再结晶动力学敏感因素,温度对其影响不大;动态再结晶率50%的时间t50与应变速率成反比.  相似文献   

3.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

4.
采用Gleeble-1500热模拟试验机进行了T91钢的压缩试验,研究了变形温度为1100~1250℃、应变速率为0.01~1 s-1时该钢的变形行为,分析了流变应力与应变速率和变形温度之间的关系,计算了高温变形时应力指数和变形激活能,并采用Zener-Hollomon参数法构建该钢高温塑性变形的本构关系,绘制了动态再结晶图和热加工图.结果表明:在试验变形条件范围内,其真应力-真应变曲线呈双峰特征;钢中发生了明显的动态再结晶,且再结晶类型属于连续动态再结晶.T91钢的热变形激活能为484 kJ.mol-1,利用加工图确定了热变形的流变失稳区,结合力学性能,可以优先选择的变形温度为1200~1 250℃,应变速率不高于0.1 s-1.   相似文献   

5.
使用Gleeble-3500热模拟试验机对A100超高强度钢在应变速率为0.01~10 s-1、变形量为63.3%、变形温度为850~1 200℃条件下的流变应力行为进行了试验研究,并结合微观组织分析了不同变形条件下动态再结晶行为。结果表明:A100钢热压缩变形中流变应力随温度的增加而降低,随应变速率的增加而增加。在850℃变形时主要发生动态回复,在变形温度为900~1 200℃、应变速率为0.01~10 s-1均发生动态再结晶。基于Arrhenius双曲正弦模型,利用线性回归方法建立了高强钢A100的本构方程,为A100钢的数值模拟和热加工工艺的制定提供了理论基础。  相似文献   

6.
罗远  庞玉华  孙琦  刘峰  王海  刘东 《钢铁研究学报》2020,32(11):977-983
摘要:利用 Gleeble-3500 热模拟实验机完成了07MnNiMoDR钢热等温平面应变压缩实验,获得了温度 900~1100℃、应变速率 0.01~1s-1、变形率45%等条件的高温流变行为,其中温度和应变速率对流变应力的影响明显。基于对Arrhenius 方程和 Zener Hollomon 参数的解析,获得了热变形激活能Q,确定了峰值应力本构模型;通过分析应力应变与位错的关系,获得了硬化率及Z参数等与应力之间的内在关联性,建立了加工硬化 动态回复过程的流变应力模型;基于动态再结晶理论,采用Avrami模型计算了动态再结晶体积分数,获得Z参数计算方法,建立了动态再结晶过程的流变应力模型。利用所建立的本构模型完成了预测及对比分析,相关系数r为0.99,所建立的本构关系模型精度很高。  相似文献   

7.
 采用Gleeble-3500热模拟试验机对55SiMnMo贝氏体钢进行了热压缩试验,得到了其在变形温度为950~1150℃和应变速率为0.01~10s-1条件下的高温流变应力行为。试验结果表明,峰值应力随变形温度的降低和应变率的提高而增大;当应变速率为0.01和0.1s-1,变形温度t ≥1000℃时,发生动态再结晶。基于试验结果,充分考虑了热变形工艺参数(应变、应变速率和变形温度)对流变应力的影响,建立了一种考虑应变速率补偿的高温流变应力本构方程。通过对该本构方程预测得到的流变应力值和试验值对比,验证了模型的准确性。  相似文献   

8.
在Sellars-Tegart方程的基础上确立了低温区的ε,ε’与T的关系。针对SS400钢,建立了在低温区预测流变应力的数学模型。该模型由两个基本方程组成,它们确立了应力与应变,温度,应变速率的数学关系,成功地预测了动态回复型,动态再结晶型应力-应变曲线,以及应变诱导相变对该曲线的影响,利用上述模型对400MPa级超级钢结晶化工业轧制实验的轧制力进行了预测,其结果与实验值吻合良好。  相似文献   

9.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

10.
采用MMS-200热力模拟试验机,在变形温度950 ~1200℃以及变形速率0.01~10 s-1条件下对0.07C-0.85Mn-0.16S-0.05Bi钢进行一系列热压缩实验.结果 表明,实验钢的流变应力曲线呈现明显的动态再结晶特征,并且流变应力随变形温度的提升或者应变速率的下降而降低.根据不同变形条件下的峰值应力,由Arrhenius模型构建了峰值应力下的本构方程,计算实验钢热变形激活能Q并基于动态材料模型绘制真应变为0.1、0.3、0.5、0.7的热加工图.研究分析了实验钢在不同应变下的失稳区域和合理热加工区域,随着应变的增大,失稳区均出现在高速率变形区,且由低温高速率区向高温高速率区转变.最佳热加工参数为变形温度1020~1200℃、变形速率0.01~0.3 s-1.  相似文献   

11.
摘要:为了探究Custom 450钢的动态再结晶行为,采用Gleeble 3800热模拟试验机,在变形温度为1050~1200℃和应变速率为0.01~10s-1的变形条件下开展了单道次等温压缩试验。研究结果显示,在变形温度为1050~1200℃和应变速率为1.0~10s-1的变形范围内,钢虽发生了完全的动态再结晶,但应力应变曲线未表现出明显的应力峰值;钢的动态再结晶的晶粒尺寸随着变形温度的升高和应变速率的降低逐渐增大,当应变速率为001s-1时,动态再结晶晶粒发生长大。采用双曲正弦函数构建了Cutom 450钢的热变形方程,并建立了钢的动态再结晶动力学、临界应变、峰值应变及动态再结晶晶粒尺寸与Zener Holloman参数的定量关系。  相似文献   

12.
梁剑雄  雍岐龙  张良  王长军 《钢铁》2016,51(9):82-89
 运用Gleeble-3800热模拟试验机研究了1Cr17Ni1马氏体-铁素体双相不锈钢在变形温度为950~1 150 ℃、应变速率为0.1~10 s-1条件下的热压缩变形行为。运用双曲正弦函数构建了本构方程,得到了表观激活能为391.586 kJ/mol,并基于动态材料模型绘制了1Cr17Ni1钢不同应变量下的热加工图。观察变形后的组织形貌得到较低温度下发生动态回复与动态再结晶,较高温度只发生动态回复,综合热加工图与变形后组织得到最佳热变形工艺:热加工温度范围为950~1 000 ℃、热加工变形速率范围为0.1~0.3和5~10 s-1。  相似文献   

13.
40Cr10Si2Mo钢的热变形模型及动态再结晶行为   总被引:1,自引:0,他引:1  
王庆娟  王钦仁  杜忠泽  何泽恩  党雪  齐泽江 《钢铁》2021,56(11):112-121
 为了优化马氏体耐热钢40Cr10Si2Mo的热轧生产工艺参数,建立线棒材轧制数字化设计及智能化系统数据库,在Gleeble-3500热模拟机上对马氏体耐热钢40Cr10Si2Mo进行单道次热压缩试验,研究了该钢在温度为900~1 100 ℃、应变速率为0.1~20 s-1条件下的应变补偿本构方程及动态再结晶行为,为探索塑性变形行为和组织优化提供理论依据。结果表明,应力随变形温度的升高而减小,随应变速率的增加而增加。温度和应变速率对热变形抗力(真应力)的影响主要取决于在塑性变形过程中,金属内部发生的加工硬化与动态回复、再结晶等软化机制交互作用的结果。建立了双曲正弦(Arrhenius)本构模型。对比发现所建立的本构模型预测值与试验值相关系数R2为0.983 97,平均相对误差(AARE)为4.531%。采用对σ-ε曲线进行4次多项式拟合并求导的方法,分析了40Cr10Si2Mo钢的软化过程以及不同温度和应变速率下动态再结晶的临界条件。阐述了动态再结晶的临界条件与lnZ(Zener-Hollomon参数)值的关系。发现40Cr10Si2Mo钢在lnZ值小于63时,动态再结晶的临界应变随lnZ值的增大而增大。在lnZ值大于63时,动态再结晶的临界应变随lnZ值的增大变化不明显。对比了40Cr10Si2Mo钢的微观组织,发现在1 100 ℃/0.1 s-1条件下晶粒发生了相互吞食合并,部分再结晶晶粒没有长大,最终导致混晶组织出现。然而增加应变速率有助于动态再结晶晶粒的细化。  相似文献   

14.
为制定中温中压容器用钢13MnNiMoR的热加工工艺提供理论依据并实现其工业化生产,利用单道次热压缩模拟实验研究了变形温度(900~1150℃)和应变速率(0.01~1s~(-1))对其热变形行为的影响.结果表明:当应变速率低于0.1s~(-1)时,新晶粒有足够的时间进行形核和长大,奥氏体容易发生动态再结晶;当变形温度降低或应变速率增加时,实验钢在变形过程中主要发生动态回复,流变应力也随之提高.基于测定的流变应力曲线,通过拟合得到实验钢在热变形时的应力指数为4.29,动态再结晶激活能为319kJ/mol,据此建立了13MnNiMoR钢在高温变形时的热加工方程.  相似文献   

15.
黄顺喆  厉勇  王春旭  韩顺  刘宪民  田志凌 《钢铁》2014,49(7):107-113
 在Gleeble-3800热模拟试验机上对9310钢进行了900~1 200 ℃温度范围内的高温轴向压缩试验。基于动态材料模型理论(DMM),在Prasad和Murthy 2种流变失稳准则下建立了9310钢的热加工图,并结合变形过程中的显微组织进行了热加工参数优化的分析。结果表明,本试验条件下,9310钢热变形在Prasad和Murthy流变失稳准则下的稳定性函数[ξ(ε·)]均大于0;在变形条件为950~1 050 ℃,0.01~0.1 s-1时具有最佳的热加工性能,此区域内功率耗散率值均大于32%;能量耗散功率恒定时,变形温度对动态再结晶晶粒尺寸起主导作用,变形温度恒定时,高应变速率下的动态再结晶晶粒更加细小均匀。  相似文献   

16.
The hot compression tests on an SPHC steel were carried out in the temperature range of 900-1150 ℃ and strain rate range of 0.1-10 s-1,in which the maximum true strain is 0.8.The activation energy of test steel was calculated,to be 299.4 kJ/mol.The critical stresses and strains for initiation of dynamic recrystallization were determined based on changes of the work hardening rate(θ)as a function of the flow stress(σ)or strain(ε),respectively.The dependence of the peak strain(εp),the peak stress(σp),and the steady state stress(σs)were determined based on the Zener-Hollomen parameter.The mathematical models of the flow stress evolution were established in the hardening and dynamic recovery region and dynamic recrystallization region,respectively.The average error between experimental curves and predicted ones was around 3.26%.  相似文献   

17.
采用Gleeble-3800热模拟试验机,在温度为1 000~1 200℃、应变速率为0.01~1 s-1和变形量为70%的条件下研究了2Cr11Mo1VNbN钢的热变形行为,建立了动态再结晶型本构模型以及动态再结晶体积分数模型。结果表明:2Cr11Mo1VNbN钢在高温小应变速率的变形条件下易发生动态再结晶,计算得出2Cr11Mo1VNbN钢发生动态再结晶时的临界应变以及变形激活能并得到了动态再结晶体积分数模型,最终构建出的动态再结晶型本构方程能良好地描述2Cr11Mo1VNbN钢的高温流变行为。  相似文献   

18.
RAFM钢应变补偿本构关系及热加工图   总被引:1,自引:0,他引:1  
邱国兴  白冲  蔡明冲  王建立  李小明  曹磊 《钢铁》2022,57(11):157-166
 低活化铁素体/马氏体(RAFM)钢具有较低的辐照肿胀率和优异的力学性能,被认为是聚变堆首选的结构材料。然而,低活化钢强度高、冷塑性变形抗力大的特点,使其难以通过冷加工或低温加工实现大规模生产。使用MMS-200型热模拟试验机,在变形温度为950~1 200 ℃、应变速率为0.1~5 s-1和最大变形量为50%条件下,进行了低活化铁素体/马氏体钢(0.11C-9.4Cr-1.35W-0.22V-0.05Si-0.11Ta-0.50Mn)单道次热压缩试验,研究其热变形行为。基于动态材料模型构建了不同应变量下的低活化钢变形本构方程和热加工图,确定了最优热加工参数,结合金相结果分析了材料变形过程中微观组织演化规律,为低活化钢的热加工成形工艺及组织优化提供理论参考。结果表明,在相同应变速率下,随着变形温度升高,流变应力逐渐降低,在一定变形温度下,流变应力随应变速率增大而增大;温度和应变速率对组织的影响主要取决于变形过程中材料内部发生的动态回复和再结晶等机制的交互作用。使用六阶多项式拟合进行应变补偿建立的低活化钢变形本构方程具有较高的预测精度,平方相关系数为0.972。显微组织和热加工图分析结果表明,温度升高为再结晶提供了充足能量,材料软化机制由动态回复转变为动态再结晶;减小应变速率,能量有足够时间扩散,有利于动态再结晶的进行;在变形温度为1 060~1 130 ℃、应变速率为0.13~0.36 s-1条件下和合金耗散系数η达到36%的最佳热加工参数范围,可获取到均匀动态再结晶组织。  相似文献   

19.
摘要:采用ThermecmastorZ热模拟试验机研究了EH40船板钢在850~1050℃,0.005~10s-1条件下的热变形行为,通过动态材料模型得到该区域的热变形与变形抗力方程并建立了EH40船板钢热加工图。结果表明,EH40船板钢的变形抗力模型的预测值与试验值吻合良好,EH40船板钢的热变形激活能为324.479kJ/mol,由热加工图确立出EH40船板钢最优的热加工窗口是应变不高于0.4,温度在850~1050℃,应变速率为小于10s-1的加工区域,较易发生动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号