首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
通过分析不同变形温度及应变速率下低硅含磷系TRIP钢高温流变曲线的变化规律,建立了本构关系,并分析了合金元素钒对其影响。结果表明,添加0.19%钒,由于固溶钒原子的拖曳作用,使动态再结晶激活能提高~6%,同时推迟了动态再结晶的发生,使σc/σp和εc/εp值均有所提高。通过回归得到无钒钢和含钒钢的峰值应力和临界应力、峰值应变和临界应变与lnZ的关系。  相似文献   

2.
B30MnSi钢的动态再结晶行为   总被引:4,自引:1,他引:3  
魏立群 《特殊钢》2005,26(4):13-15
采用Gleeble1500热模拟试验机对B30MnSi钢(%:0.32C,1.04Mn,0.85Si,0.019P,0.009S)进行变形温度为850~1000℃,应变速度为0.1~101/s的压缩变形试验,以研究该钢的动态再结晶规律。并通过回归分析得出峰值应力σm,应变εp,动态再结晶临界应变εc与温度补偿变形速率因子Z之间关系式为σm=16.689Ln(Z)-347.41;εp=0.0474Ln(Z)-1.1023;εc≈0.0393Ln(Z)-0.915。  相似文献   

3.
Cu-P-Cr-Ni-Mo耐候钢高温变形奥氏体的动态再结晶   总被引:1,自引:0,他引:1       下载免费PDF全文
用Gleeble-3500热模拟试验机研究了Cu-P-Cr-Ni-Mo耐候钢(%:0.10C、0.075P、0.65Cr、0.22Ni、0.43Mo、0.28Cu)在应变速率0.01~1 s-1、温度850~1150℃时的动态再结晶行为,得出该钢奥氏体区的真应力-真应变曲线和动态再结晶图,分析了变形参数对峰值应力的影响和不同热变形时耐候钢的动态再结晶体积分数与真应变的关系,建立了该钢的奥氏体热变形方程、动态再结晶临界条件回归方程和奥氏体动态再结晶体积分数数学模型。结果表明,随变形温度升高,峰值应力下降;随变形速率增大,峰值应力升高;随Z参数增大即变形温度降低,应变速率增加,发生再结晶的临界应变εc和发生完全再结晶的应变εs均呈线性增加。  相似文献   

4.
 为了探索材料热塑性变形工艺理论,针对热轧态17Cr2Ni2Mo齿轮用钢进行热力模拟试验,研究材料在应变速率=0.01~10 s-1、热变形温度t=1 050~1 150 ℃条件下的动态再结晶行为。结果表明,在较高应变速率下,应力在峰值后,出现动态回复或持续性动态再结晶软化,在较低应变速率下,应力呈现波浪多峰值状,出现多次动态再结晶软化。通过加工硬化率随应变变化曲线(θ ε),确定了动态再结晶临界特征应变量εc,结合峰值应变量εp统计得到εc/εp比值为0.629~0.854,并可知当应变速率一定时,εc随着温度升高而减小,当温度一定时,εc随应变速率的增大而增大。同时建立了流变应力本构方程,数据验证平均相对误差为1.705%。最后建立了动态再结晶动力学模型。  相似文献   

5.
Mg-Y-Nd-Gd-Zr合金动态再结晶实验研究   总被引:3,自引:0,他引:3  
在温度为523~723 K,应变速率为0.002~1 s-1,最大变形程度为50%的条件下,采用GLEEBLE-1500热模拟机对Mg-Gd-Y-Nd-Zr合金进行了高温压缩实验研究.从真应力-真应变曲线上得到了应变硬化率(θ),分别绘制了在不同压缩条件下的θ-σ,-(эθ/эσ)-σ和Inθ-σ.结果表明:动态再结晶开始发生的临界条件满足((э/ σ)(эθ-эσ/))=0,发现动态再结晶开始的临界应力、临界应变与峰值应力、峰值应变的比值在一定范围内变化,动态再结晶过程在真应力-真应变曲线峰值点之前就开始发生.通过金相显微组织研究了该镁合金在不同温度和不同应变速率下的组织演变,采用截线法测量平均晶粒尺寸.结果表明:再结晶晶粒的平均晶粒尺寸随温度的升高、应变速率的减小而增大;随温度的降低应变速率的增大而减小;峰值应力随平均晶粒尺寸的减小而增大,随平均晶粒尺寸的增大而减小.  相似文献   

6.
 利用Thermecmastor-Z热模拟实验机,得到了Fe16Mn0.6C TWIP钢在变形温度850~1150℃,应变速率0.03~30s-1条件下热压缩变形的真应力应变曲线。进而研究了变形温度、应变速率对Fe16Mn0.6C流变应力和临界动态再结晶行为的影响规律。结果表明,850~1150℃范围内Fe16Mn0.6C热变形的峰值应力随温度的升高而降低,随着应变速率的增大而升高;且在应变速率为0.03 s-1和30 s-1出现明显的应力峰值,材料发生了动态再结晶。最后采用线性回归方法计算出Fe16Mn0.6C的高温变形流变应力本构方程,得出热变形激活能为469kJ/mol;并通过应变硬化速率与流变应力曲线求出了该钢种动态再结晶临界条件与Z参数之间的关系。  相似文献   

7.
龚乾江  梁益龙  杨明  姜云  徐祥 《钢铁》2017,52(6):67-75
 采用Gleeble-3800热模拟试验机对20CrMnTiH钢进行了等温热压缩试验,研究了该钢在变形温度为850~1 150 ℃、应变速率为0.01~10 s-1条件下的高温热变形行为,运用数学回归方法和热力学不可逆原理,建立了20CrMnTiH钢应变补偿的唯象本构方程和动态再结晶模型,并对该应变补偿的唯象本构模型进行了有效验证。在真应力-真应变曲线中,变形温度和应变速率对20CrMnTiH钢的流变应力影响显著,表现出正的应变速率敏感性和负的温度敏感性;由本构模型计算得到的流变应力值与试验值两者之间有很好的相关性[(R=0.976 64),]平均相对误差为5.544 2%;在应变硬化速率与流变应力关系曲线中,利用单一参数法和求解拐点法获得了不同变形条件下动态再结晶的临界应力[σc]和临界应变[εc]值,建立了临界应力、临界应变和Zener-Hollomon参数的数学模型[ε≥εc=][0.007 9 lnZ-0.153 23,]且临界应变[εc]随着温度补偿应变速率因子[Z]的增加而增加。  相似文献   

8.
在热模拟实验的基础上,分析了变形条件及微合金元素Nb(0.018%~0.056%)、V(0.01%-0.02%)、Ti(0.01%-0.02%)对0.06%-0.08%C实验钢的热变形行为的影响。在Sellas-Tartat方程的基础上,建立了应力-应变曲线数学模型:动态回复模型σ(e)=σ0 (σp—σ0)[1-exp(-3.23ε/εs)]^0.5,式中:σp-峰值应力,σ0-初始应力,ε-变形应变,σs-加工硬化与回复进入稳态的临界应变;动态再结晶模型σ=σ(e)-(σp-σss){1-exp[-2.363(ε-εc)εc^0.3425)^2]},式中:σss-动态再结晶进入稳态时的应力,εc-动态再结晶临界应变。利用该模型对0.07%C-0.018%Nb实验钢工业轧制时轧制压力进行了预测,其结果与实测值吻合良好。  相似文献   

9.
为研究钒对低碳钢动态再结晶的影响规律,选取4种对比成分的钒氮微合金化钢,测量动态再结晶的流变应力曲线,获得了峰值应力σ_p、应变速率ε及变形温度T的对应关系,分析了变形温度、V及N含量对流变应力曲线的影响。建立了钒氮微合金化钢及对比钢的热变形动态再结晶Avrami模型,回归得到其动态再结晶名义激活能。结果表明:V对动态再结晶临界温度提高有限,V和N复合后对动态再结晶临界温度提高明显,延迟再结晶能力增强。  相似文献   

10.
摘要:为了探究Custom 450钢的动态再结晶行为,采用Gleeble 3800热模拟试验机,在变形温度为1050~1200℃和应变速率为0.01~10s-1的变形条件下开展了单道次等温压缩试验。研究结果显示,在变形温度为1050~1200℃和应变速率为1.0~10s-1的变形范围内,钢虽发生了完全的动态再结晶,但应力应变曲线未表现出明显的应力峰值;钢的动态再结晶的晶粒尺寸随着变形温度的升高和应变速率的降低逐渐增大,当应变速率为001s-1时,动态再结晶晶粒发生长大。采用双曲正弦函数构建了Cutom 450钢的热变形方程,并建立了钢的动态再结晶动力学、临界应变、峰值应变及动态再结晶晶粒尺寸与Zener Holloman参数的定量关系。  相似文献   

11.
摘要:采用Gleeble-3500热模拟试验机,在温度为950~1150℃、应变速率为0.1~10s-1和变形量为65%的条件下研究了CSP热轧TRIP钢的动态再结晶行为,探讨了初始奥氏体晶粒尺寸对TRIP钢动态再结晶行为的影响。研究结果表明,初始奥氏体晶粒尺寸越小,变形温度越高,应变速率越慢时,TRIP钢中奥氏体越易发生动态再结晶。其中,粗晶试样(初始奥氏体晶粒尺寸为767.54μm)在1050~1150℃内变形时,将发生动态再结晶。其热变形激活能为361539.17J/mol,确定了Zener-Holloman参数与应变速率和温度的关系式,建立了动态再结晶临界应变模型、高温奥氏体流动应力模型和动态再结晶晶粒尺寸模型,理论模拟结果与试验结果吻合较好。  相似文献   

12.
徐刚  李士琦  王乐  刘奇 《特殊钢》2013,34(3):60-63
试验用EA4T车轴钢(/%:0.26C、0.35Si、0.75Mn、0.011P、0.012S、1.04Cr、0.22Mo)由10 kg真空感应炉熔炼。用Gleeble-1500热模拟试验机对EA4T车轴钢进行高温单道次压缩试验以研究温度(950~1150℃)、应变量(0~0.8)和应变速率(0.1~20 s-1)对该钢变形抗力的影响,并建立该钢热变形抗力的数学模型。结果表明,钢种在较高温度和较低应变速率下动态再结晶容易发生,峰值应力(σP)、峰值应变(εP)和稳态应力(σs)与参数lnZ成线性关系;实验钢的峰值与稳态激活能分别为320.22 kJ/mol和361.91 kJ/mol;变形抗力的预测模型与实验所得结果吻合良好。  相似文献   

13.
采用MMS-200热力模拟试验机,在变形温度950 ~1200℃以及变形速率0.01~10 s-1条件下对0.07C-0.85Mn-0.16S-0.05Bi钢进行一系列热压缩实验.结果 表明,实验钢的流变应力曲线呈现明显的动态再结晶特征,并且流变应力随变形温度的提升或者应变速率的下降而降低.根据不同变形条件下的峰值应力,由Arrhenius模型构建了峰值应力下的本构方程,计算实验钢热变形激活能Q并基于动态材料模型绘制真应变为0.1、0.3、0.5、0.7的热加工图.研究分析了实验钢在不同应变下的失稳区域和合理热加工区域,随着应变的增大,失稳区均出现在高速率变形区,且由低温高速率区向高温高速率区转变.最佳热加工参数为变形温度1020~1200℃、变形速率0.01~0.3 s-1.  相似文献   

14.
采用MMS-200热力模拟试验机,在变形温度950 ~1200℃以及变形速率0.01~10 s-1条件下对0.07C-0.85Mn-0.16S-0.05Bi钢进行一系列热压缩实验.结果 表明,实验钢的流变应力曲线呈现明显的动态再结晶特征,并且流变应力随变形温度的提升或者应变速率的下降而降低.根据不同变形条件下的峰值应力,由Arrhenius模型构建了峰值应力下的本构方程,计算实验钢热变形激活能Q并基于动态材料模型绘制真应变为0.1、0.3、0.5、0.7的热加工图.研究分析了实验钢在不同应变下的失稳区域和合理热加工区域,随着应变的增大,失稳区均出现在高速率变形区,且由低温高速率区向高温高速率区转变.最佳热加工参数为变形温度1020~1200℃、变形速率0.01~0.3 s-1.  相似文献   

15.
钒氮微合金钢的动态再结晶数学模型研究   总被引:1,自引:0,他引:1  
利用Gleeble-3800热模拟试验机对含钒微合金钢进行了温度范围为900~1 050℃,应变速率范围为0.1~10 s-1的单道次压缩试验,得到了试验钢的应力-应变曲线。采用回归分析法确定了双曲线本构方程中的材料常数,动态再结晶激活能和临界应变量与Z参数的关系。根据该试验钢发生动态再结晶的条件,建立了其动态再结晶图。  相似文献   

16.
 采用Gleeble-3500热模拟试验机对55SiMnMo贝氏体钢进行了热压缩试验,得到了其在变形温度为950~1150℃和应变速率为0.01~10s-1条件下的高温流变应力行为。试验结果表明,峰值应力随变形温度的降低和应变率的提高而增大;当应变速率为0.01和0.1s-1,变形温度t ≥1000℃时,发生动态再结晶。基于试验结果,充分考虑了热变形工艺参数(应变、应变速率和变形温度)对流变应力的影响,建立了一种考虑应变速率补偿的高温流变应力本构方程。通过对该本构方程预测得到的流变应力值和试验值对比,验证了模型的准确性。  相似文献   

17.
采用MMS-200热力模拟试验机,在变形温度950 ~1200℃以及变形速率0.01~10 s-1条件下对0.07C-0.85Mn-0.16S-0.05Bi钢进行一系列热压缩实验.结果 表明,实验钢的流变应力曲线呈现明显的动态再结晶特征,并且流变应力随变形温度的提升或者应变速率的下降而降低.根据不同变形条件下的峰值应力,由Arrhenius模型构建了峰值应力下的本构方程,计算实验钢热变形激活能Q并基于动态材料模型绘制真应变为0.1、0.3、0.5、0.7的热加工图.研究分析了实验钢在不同应变下的失稳区域和合理热加工区域,随着应变的增大,失稳区均出现在高速率变形区,且由低温高速率区向高温高速率区转变.最佳热加工参数为变形温度1020~1200℃、变形速率0.01~0.3 s-1.  相似文献   

18.
研究了一种700 MPa微合金高强钢。在热力模拟试验机上进行了试验钢的单道次压缩试验,通过其各种变形参数的研究,建立了试验钢的变形抗力数学模型和动态再结晶模型。试验结果显示:试验钢在变形温度为950℃,应变速率为0.1 s-1;变形温度为1 000℃,应变速率为0.1 s-1;变形温度为1 050℃,应变速率为0.1s-1或1 s-1;变形温度为1 100℃,应变速率为0.1 s-1、1 s-1或5 s-1这几种条件下会发生动态再结晶。  相似文献   

19.
采用Gleeble-3800热模拟机进行单道次压缩试验,研究了AH60C高强钢在变形温度850℃、950℃、1050℃,应变速率0.1 s-1、1s-1、10s-1条件下的动态再结晶行为。采用Zener-Hollomon参数的正弦函数计算出材料参数值α、n、A以及AH60C高强钢热变形激活能Q,并且利用加工硬化原理来计算动态再结晶临界条件。结果表明:随着变形温度的升高,流变应力降低,随着应变速率的增大,流变应力增大,并且变形温度越高,应变速率越低,动态再结晶越彻底;计算出的AH60C高强钢热变形激活能Q为293 305.163 J/mol;临界应变随着变形温度的升高而降低,随着应变速率的增大而增大,且在本次试验条件下,AH60C高强钢动态再结晶临界应变预测模型为εc=3.04×10((-4))Z1.889 75。  相似文献   

20.
为了探究Custom 450钢的动态再结晶行为,采用Gleeble-3800热模拟试验机,在变形温度为1 050~1 200℃和应变速率为0.01~10 s~(-1)的变形条件下开展了单道次等温压缩试验。研究结果显示,在变形温度为1 050~1 200℃和应变速率为1.0~10 s~(-1)的变形范围内,钢虽发生了完全的动态再结晶,但应力应变曲线未表现出明显的应力峰值;钢的动态再结晶的晶粒尺寸随着变形温度的升高和应变速率的降低逐渐增大,当应变速率为0.01 s~(-1)时,动态再结晶晶粒发生长大。采用双曲正弦函数构建了Cutom 450钢的热变形方程,并建立了钢的动态再结晶动力学、临界应变、峰值应变及动态再结晶晶粒尺寸与Zener-Holloman参数的定量关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号