首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hot Deformation Behavior of F6NM Stainless Steel   总被引:1,自引:0,他引:1  
The hot deformation behavior of F6NM stainless steel was investigated by hot compression test in a Gleeble-1500D thermal-mechanical simulator. The flow strain-stress curves were obtained and the corresponding metallographic observation of this steel under different deformation conditions was also carried out. This steel exhibi- ted dynamic recrystallization (DRX) in the temperature range of 1 273- 1473 K and the strain rate range of 0.01- 0.1 s^-1. The activation energy for hot deformation was determined to be 457.91 kJ/mol, and the hot deformation equations were also established. The flow instability zone was determined and could be divided into two regions. The first one was located in the temperature range of 1 173- 1 348 K and the strain rate range of 0. 056-10 s^-1 , while the second one is in the temperature range of 1398-1448 K and the strain rate range of 1.25-10 s^-1. In the end, the optimum conditions for hot working were provided.  相似文献   

2.
The static recrystallization behavior of low-alloy steel Q345B during double-pass hot compression deformation tests was investigated in the temperature range of 900-1000 ℃,the true strain range of 0.15-0.25 and the interpass time range of 0.5-50 s on Gleeble-3500 thermo-simulation machine.The results show that static recrystallization during the interpass time is observed.As the deformation temperature and strain increase,softening caused by static recrystallization is obvious.According to the analysis and calculation of thermo-simulation data,the static recrystallization activation energy was obtained and static recrystallization kinetics model was built.Finally,the error analysis of static recrystallization kinetics model proved that the model had good accuracy.Therefore,this model provides a theoretical basis for static recrystallization(SRX)and will contribute to the development of multipass hot rolling process,in order to control the rolling process more accurately.  相似文献   

3.
Hot compression tests were conducted on a Gleeble-3800 machine in a temperature range of 950 to 1200 ℃ and a strain rate range of 0. 001 to 10 s-1 in order to study the hot deformation behaviour of superaustenitic stainless steel 654SMO. The results show that peak stress increases with decreasing temperature and increasing strain rate, and the apparent activation energy of this alloy was determined to be about 494 kJ/mol. The constitutive equation which can be used to relate the peak stress to the absolute temperature and strain rate was obtained. The processing maps for hot working developed on the basis of flow stress data and the dynamic materials model were adopted to op- timize the hot workability. It is found that the features of the maps obtained in the strain range of 0.2 to 1.0 are fun- damentally similar, indicating that the strain does not have a substantial influence on processing map. The combina- tion of processing map and mierostructural observations indicates that the favorable hot deformation conditions are located in two domains of processing map. The first domain occurs in the temperature range of 980 to 1035 ℃ and strain rate range of 0. 001 to 0.01 s-1 with a peak efficiency of 55%. The second domain appears in the temperature range of 1 120 to 1 180 ℃ and strain rate range of 0.3 to 3 s-1 with peak efficiency of 35%. Compared to other stable domains, the specimens deformed in these two domains exhibit full dynamic recrystallization grains with finer and more uniform sizes. An instability domain occurs at temperatures below 1 100 ℃ and strain rate above 0.1 s-1 , and flow instability is manifested in the form of flow localization.  相似文献   

4.
 The hot deformation characteristics of GH4720Li alloy were studied at the temperature of 1100-1170 ℃ and strain rate of 001-1 s-1 using Gleeble hot compression tests. True stress-true strain curves and deformation microstructures were investigated. Constitutive equation was established using the hyperbolic law. Processing map for hot working was also developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate. The results show that dynamic recrystallization is the dominant softening mechanism during hot deformation. Fully recrystallized grain is obtained at strain of 07 above 1130 ℃, and coarsening occurs above 1150 ℃. The mean deformation activation energy is determined to be 512 kJ/mol. According to the low activation energy value, high dissipation efficiency parameter and fine recrystallized microstructure, 1130 ℃ is chosen as the hot working temperature for GH4720Li alloy.  相似文献   

5.
 Hot compression tests of P92 steel at temperatures in the range of 1173 to 1523 K and at strain rates in the range of 0.1 to 10 s-1 were carried out on a Gleeble-3500 thermal-mechanical simulator, and the corresponding flow curves were measured. The results showed that the flow stress and the peak strain increase with decreasing deformation temperature and increasing strain rate. The critical Z value, below which the complete dynamic recrystallization may occur, was determined to have 4.61×1018. The hot deformation activation energy of the steel was about 437 kJ/mol. The hot deformation equation and the microstructure diagram of P92 steel were obtained. For the convenience of the practical application, the empirical equation for the peak stress can be described as σP=17.17ln+902499T-524.1.  相似文献   

6.
The hot deformation behavior of homogenized Nia Al-based alloy MX246A has been characterized on the basis of its flow stress variation obtained by isothermal constant true strain rate compression testing on the MTS 810 machine in the temperature range of 1 150--1225 ℃ and strain rate range of 0. 001-0.1 s-1. Microstructural obser- vation revealed striped secondary γ' phase which was vertical to compression axis, and precipitation of fine ternary γ" phase. The amount of striped secondary γ' phase reduced and that of fine ternary γ' phase increased with increasing temperature and decreasing strain rate. The material exhibited peak stress followed by flow softening, but no obvious steady-state flow behavior. Microstructural investigations have shown no dynamic recrystallization happened. TEM studies indicated that the flow softening was controUed by dynamic recovery mechanism.  相似文献   

7.
 Direct quenching and tempering (DQ-T) of hot rolled steel section has been widely used in steel mill for the sake of improvement of mechanical properties and energy saving. Temperature history and microstructural evolution during hot-rolling plays a major role on the properties of direct quenched and tempered products. The mathematical and physical modeling of hot forming processes is becoming a very important tool for design and development of required products as well as to predict the microstructure and the properties of the components. These models were mostly applied to predict austenite grain size (AGS), dynamic, meta-dynamic and static recrystallization in the rods immediately after hot rolling and prior to DQ process. In this paper the hot compression tests were carried on 42CrMo4 steel in the temperature range of 900 - 1100°C and the strain rate range of 0.05 - 1 s- 1 in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.  相似文献   

8.
Hot compression tests were conducted in a temperature range of 800-1 100℃and strain rate range of 0.1-10s-1 using a Gleeble 3500thermomechanical simulator to investigate the influence of hot deformation parameters(temperatures,strain rates and strains)on the grain boundary network evolution of a new grade Fe-Cr-Ni superaustenitic stainless steel.The results showed that a dominant effect of deformed temperature isΣ3n(n=0,1,2,3) boundaries population increased with decreasing temperature,while they first increased and then reduced with increasing strain and strain rate.Interestingly,besidesΣ3n(n=1,2,3)twin grain boundaries,someΣ1boundaries could interrupt grain boundaries network effectively,which enhance material performances.But they are scarcely reported.The misorientation of some segments LAGBs in the deformed microstructure(pancaked grains)increased and slid to high angle grain boundaries with increasing the fraction of recrystallized grains during hot deformation.  相似文献   

9.
  The hot deformation characteristics of ductile iron are studied in the temperature range of 973 to 1273K and strain rate range of 0001 to 1 s-1 by using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate. The results reveal that the flow stress of ductile iron is sensitive to strain rate. In the processing map under strain of 07, a domain is centered at 1273 K and 1 s-1, and the maximum efficiency is more than 36%. According to the maps, the zone with the temperature range of 1173 to 1273 K and strain rate range of 01 to 1 s-1 may be considered as the optimum region for hot working.  相似文献   

10.
 Modified CNS-Ⅱ F/M steel was designed for in-core components of supercritical water cooled reactor. Study on the hot deformation behavior of modified CNS-Ⅱ F/M steel is of great importance for processing parameter planning and microstructure controlling during hot deformation. The hot deformation behavior of modified CNS-Ⅱ F/M steel was investigated through isothermal hot compression test at temperature ranging from 1223 to 1373 K and strain rate 001 to 10 s-1. The true stress-true strain data gained from compression tests were used to built constitutive equation of modified CNS-Ⅱ F/M steel. The influence of strain on the accuracy of constitutive analysis was incorporated, assuming strain has a influence on material constants. A 5th order polynominal equation with very good accuracy was used to represent the influence of strain on material constant. The flow stresses calculated from the constitutive equation were compared with test values in the whole experiment range and the absolute average error for the constitutive equation in predicting flow stress is 4728%. At last, the recrystallization behavior of modified CNS-Ⅱ F/M steel was investigated. The relationship of critical strain and peak strain with Zener-Hollomon parameter were given by an experimental equation.  相似文献   

11.
正Last month,Chinalco signed framework agreement for strategic cooperation with Harbin Municipal Government in Harbin Xiong Weiping,Chairman of Chinalco,said that based on the strategic deployment to build world top-class mining company with the highest growth potential,Chinalco was now concentrating all efforts on making strategic transition and structural adjustment,strategic cooperation with the local governments where  相似文献   

12.
<正>According to the latest info from Jiangxi Province State-owned Assets Supervision and Administration Commission,Jiangxi Copper Corporation was approved to become the first pilot enterprise for deepening reform.Contents of the pilot work is"Three Self"(self expansion,self decision-making,self  相似文献   

13.
14.
正Baosteel Technical Research,a quarterly journal,which is issued domestically and abroad,is run and sponsored by Baosteel Group Corporation.Baosteel Technical Research mainly reports the achievements in technological innovation,academic research,new product development and industrial equipment improvement by Baosteel.It will continue to follow up on hot topics and serve the company’s technological development and progress.Its readers include experts in  相似文献   

15.
【正】According to the Ministry of Industry and Information Technology,the Ministry has released the 2013 Operation Report on China’s Industrial Communication Indu...  相似文献   

16.
正Recently,Chinalco and Gansu Provincial People’s Government signed"Framework Agreement for Strategic Cooperation on Reform,Restructuring and Transition Development of Chinalco’s Electrolytic Aluminum Enterprises in Gansu",signifying that the strategic cooperation between Chinalco and Gansu Province had made new substantive progress.  相似文献   

17.
正Owing to continual downturn in real estate and bulk commodity markets,a number of traditional industries in China suffered unfavorable impact in performance.With the progressive disclosure of third quarter report,the no-pleasant-surprise performance of  相似文献   

18.
正The High Performance Magnetic Material Phase II Project,an industry upgrading project implemented by Inner Mongolia Baotou IronSteel Rare Earth(Group)Hi-tech Co.,Ltd,recently basically finished equipment commissioning,signifying that the enterprise had developed the production capacity of15000 t/a Nd-Fe-B strip casting alloy and 5000t/a Nd-Fe-B magnet,thus becoming the world’s  相似文献   

19.
正With the signing of"Letter of intention for Propelling Integration of Shandong Rare Earth Enterprises"between Shandong Province Commission Of Economy and Informatization,China IronSteel Research Institute Group("China Steel Institute"),and China Rare MetalsRare Earth Co.,Ltd("China Rare Earth"),the"Shandong Rare Earth Group"jointly set up by the 3 units thus broke surface.On August 9,reporters of the China Economic Herald learned from Shandong Province  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号