首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
摘要:采用Gleeble-1500D 热模拟机对加入质量分数0.0063%Ce的18Cr-5Ni-4Cu-N奥氏体不锈钢进行热压缩测试,测定变形温度为1273~1473K和应变速率为0.01~10s-1时热变形的应力 应变曲线,采用Zener Hollomon参数法构建高温本构方程,计算能量耗散图,并且采用场发射扫描电镜对高温变形组织进行研究。结果表明:加入质量分数0.0063%Ce的18Cr-5Ni-4Cu-N奥氏体不锈钢热变形激活能为437.85kJ/mol,与未加稀土试验钢的变形激活能数值相比没有明显差异;能量耗损图表明加入质量分数0.0063%Ce的试验钢热加工最优区域范围为1370~1473K的温度范围内应变速率大于1s-1,峰值效率大于0.2的区域;钢中的稀土复合夹杂随基体产生塑性变形改善了试验钢的加工性能。  相似文献   

2.
Isothermal hot compression tests on the as-cast high-Cr ultra-super-critical rotor steel with columnar grains were carried out in the temperature range from 1223 to 1523 K and at strain rates from 0.001 to 1 s-1 .The compression direction was parallel to the longitudinal direction of columnar grains.The constitutive equation based on Arrhenius model was presented, and the processing maps based on the dynamic material model were developed, correlating with microstructure observation.The main sof-tening mechanism was dynamic recovery at 1223 K under strain rates from 0.1 to 1 s-1 , whereas it was dynamic recrystallization under other deformation conditions.The constitutive equation modified by strain compensation reasonably predicted the flow stresses.The processing maps and microstructure evolution mechanism schematic indicated that the optimum hot working parameters lay in the zone defined by the temperature range from 1423 to 1473 K and the strain rate range from 0.001 to 1 s-1 .  相似文献   

3.
The hot compressive deformation behavior of hot isostatically pressed Ti-47.5Al-2Cr-2Nb-0.2W-0.2B al-loy using gas atomization powders was systematically investigated and the processing map was obtained in the temperature range of 1323-1473 K and strain rate range of 0.001-0.5 s-1 .The calculated activa-tion energy in the above variational ranges of temperature and strain rate possesses a low activation energy value of approximately 365.6 kJ/mol based on the constitutive relationship models developed with the Ar-rhenius-type constitutive model respectively considering the strain rate and deformation temperature.The hot working flow behavior during the deformation process was analyzed combined with the microstructural evolution.Meanwhile, the processing maps during the deformation process were established based on the dynamic material model and Prasad instability criterion under different deformation conditions.Finally, the optimal hot processing window of this alloy corresponding to the wide temperature range of 1353-1453 K and the low strain rate of 0.001-0.1 s-1 was obtained.  相似文献   

4.
6069铝合金的热变形行为和加工图   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟实验机在温度为300~450℃,应变速率为0.01~10 s?1条件下对6069铝合金进行热压缩实验,研究该合金的热变形行为及热加工特征,建立热变形本构方程和加工图。结果表明,6069铝合金热变形过程中的流变行为可用双曲正弦模型来描述,在实验条件下的平均变形激活能为289.36 kJ/mol。真应变为0.7的加工图表明合金在高温变形时存在2个安全加工区域,即变形温度为300~350℃、应变速率为1~10 s?1的区域和变形温度为380~450℃、应变速率为0.01~0.3 s?1的区域。适合加工的条件是变形温度为350℃,应变速率0.01 s?1。  相似文献   

5.
利用Gleeble-3500热力模拟试验机,在温度为1123~1423 K,应变速率为0.1~10 s-1,真应变为0.8的条件下,对一种传动部件用高强度渗碳钢(SAE9310钢)进行了高温轴向压缩试验,测得了SAE9310钢的高温流变曲线,并观察其变形后的显微组织。试验结果表明,SAE9310钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;SAE9310钢在真应变为0.8的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高,当热变形温度高于1323 K时,应变速率在0.1~10 s-1范围内,试验钢均会发生动态完全再结晶;测得9310钢的热变形激活能Q值为416.78 kJ/mol,并确立了其热变形方程。  相似文献   

6.
Hot Deformation Behavior of F6NM Stainless Steel   总被引:1,自引:0,他引:1  
The hot deformation behavior of F6NM stainless steel was investigated by hot compression test in a Gleeble-1500D thermal-mechanical simulator. The flow strain-stress curves were obtained and the corresponding metallographic observation of this steel under different deformation conditions was also carried out. This steel exhibi- ted dynamic recrystallization (DRX) in the temperature range of 1 273- 1473 K and the strain rate range of 0.01- 0.1 s^-1. The activation energy for hot deformation was determined to be 457.91 kJ/mol, and the hot deformation equations were also established. The flow instability zone was determined and could be divided into two regions. The first one was located in the temperature range of 1 173- 1 348 K and the strain rate range of 0. 056-10 s^-1 , while the second one is in the temperature range of 1398-1448 K and the strain rate range of 1.25-10 s^-1. In the end, the optimum conditions for hot working were provided.  相似文献   

7.
Ti-5Mo-5V-2Cr-3Al合金热压缩变形行为   总被引:1,自引:0,他引:1  
对Ti-5Mo-5V-2Cr-3Al钛合金进行等温压缩实验,变形温度范围为923~1123 K,应变速率为0.001~1 s<'-1>.分析表明该材料的流变应力对温度与应变速率敏感:当变形温度为923~1023 K时,流变应力曲线呈现动态再结晶曲线特征;当变形温度为1073 K时,低应变速率(0.001s<'-1>)的流变应力曲线呈现动态再结晶曲线特征,高应变速率(0.01-1 s<'-1>)的流变应力曲线呈现动态回复曲线特征;当变形温度为1123 K时,流变应力曲线呈现动态回复曲线特征;峰值流变应力随着变形温度的升高而下降,且下降速率随着温度升高而降低;峰值流变应力随着应变速率的升高而升高,升高速率在923~1023 K范围内随着应变速率升高而下降,在1073 K时随着应变速率升高而升高,在1123 K时随着应变速率升高无变化.Ti-5Mo-5V-2Cr-3Al钛合金在等温压缩变形时的流变行为可用包含Zener-Holomon参数的Arrhenius本构方程描述,变形激活能为789 kJ·mol-1.  相似文献   

8.
The hot deformation behavior of GH4945 superalloy was investigated by isothermal compression test in the temperature range of 1 000-1 200°C with strain rates of 0.001-10.000s~(-1) to a total strain of 0.7.Dynamic recrystallization is the primary softening mechanism for GH4945 superalloy during hot deformation.The constitutive equation is established,and the calculated apparent activation energy is 458.446kJ/mol.The processing maps at true strains of 0.2,0.4and 0.6are generally similar,demonstrating that strain has little influence on processing map.The power dissipation efficiency and instability factors are remarkably influenced by deformation temperature and strain rate.The optimal hot working conditions are determined in temperature range of 1 082-1 131°C with strain rates of 0.004-0.018s~(-1).Another domain of 1 134-1 150°C and 0.018-0.213s~(-1) can also be selected as the optimal hot working conditions.The initial grains are replaced by dynamically recrystallized ones in optimal domains.The unsafe domains locate in the zone with strain rates above 0.274s~(-1),mainly characterized by uneven microstructure.Hot working is not recommended in the unsafe domains.  相似文献   

9.
利用Gleeble-3500热力模拟试验机,在温度为1123~1423K,应变速率为0.5~10s-1的条件下,对航空用高强韧性的二次硬化超高强度钢(AF1410钢)进行了高温轴向压缩试验,测得了AF1410钢的高温流变曲线,并观察了变形后的显微组织。试验结果表明,AF1410钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;AF1410钢在真应变为0.8,应变速率为0.5~10s-1的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也逐渐升高。当变形速率为10s-1时,其变形温度高于1373K,才会发生完全动态再结晶;AF1410钢的热变形激活能Q值为430.39kJ/mol,并确立了其热变形方程。  相似文献   

10.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了GH690合金在变形温度为950~1200℃、应变速率为0.001~10.000 s-1条件下的热变形行为,利用动态材料模型构建了GH690合金热加工图,并基于加工图进行GH690合金管材热挤压实验。结果表明:GH690合金有应力峰和动态再结晶软化的特征,在ε≥0.4时,流动应力趋于稳定状态;在热加工图中变形温度为1100~1150℃、应变速率为1.0~2.5 s-1时功率耗散效率达到0.34~0.39,该区域对应的工艺参数适合于进行GH690合金管材热挤压;在热加工图中变形温度为950~1000℃,应变速率在0.94~10.00 s-1之间的区域为不稳定变形区域,热加工时应该避开这一区域。  相似文献   

11.
采用真空感应熔炼法制备了医用Ti-50. 7%Ni合金(原子数分数), 测试了铸态合金的成分、相变点、微观组织和硬度, 并采用Gleeble-3800热模拟实验机在变形温度750~950℃、应变速率0. 001~1 s-1, 应变量为0. 5的条件下对Ni-Ti合金进行高温压缩变形, 分析其流动应力变化规律, 建立了高温塑性变形本构关系和热加工图.结果表明: 当变形温度减小或应变速率增大时, Ni-Ti合金的流动应力会随之增大.应变速率为1 s-1时, 合金的真应力-真应变曲线呈现出锯齿状特征.根据热加工图, 获得了Ni-Ti合金的加工安全区和流变失稳区, 进而确定其合理的热变形温度范围为820~880℃, 真应变速率低于0. 1 s-1.从而为制定镍钛合金的锻造工艺参数提供理论和数据基础.   相似文献   

12.
摘要:为了探究Custom 450钢的动态再结晶行为,采用Gleeble 3800热模拟试验机,在变形温度为1050~1200℃和应变速率为0.01~10s-1的变形条件下开展了单道次等温压缩试验。研究结果显示,在变形温度为1050~1200℃和应变速率为1.0~10s-1的变形范围内,钢虽发生了完全的动态再结晶,但应力应变曲线未表现出明显的应力峰值;钢的动态再结晶的晶粒尺寸随着变形温度的升高和应变速率的降低逐渐增大,当应变速率为001s-1时,动态再结晶晶粒发生长大。采用双曲正弦函数构建了Cutom 450钢的热变形方程,并建立了钢的动态再结晶动力学、临界应变、峰值应变及动态再结晶晶粒尺寸与Zener Holloman参数的定量关系。  相似文献   

13.
吕建平  王晓辉  刘振宝  金青林 《钢铁》2021,56(6):112-119
 为了探究Custom 450高强度不锈钢最佳的热变形区间以指导实际生产过程的工艺参数设计,利用Gleeble-3800热模拟试验机在变形温度为900~1 200 ℃、应变速率为0.01~10 s-1的条件下开展了热压缩试验,探讨了Prasad和Murty两种失稳判据在Custom 450钢中的适应性,确定了最佳的热变形区间和塑性失稳机制。研究结果表明,该钢在应变速率为0.2~10 s-1、变形温度为900~1 080 ℃的条件下变形时产生了大量的局部变形带和“项链状”组织,是导致塑性失稳发生的主要原因,显微组织观察结果与Murty准则预测的塑性失稳区更为接近。基于Murty准则建立了Custom 450钢的热加工图,并确定了其最佳的热加工工艺区间分别为1 050~1 200 ℃、0.1~1 s-1和1 100~1 200 ℃、1~10 s-1。  相似文献   

14.
利用Gleeble 3500热力模拟试验机对22MnB5板材进行高温拉伸试验,研究了该材料在变形温度为700、800和900℃以及应变速率为0.01、0.1、1和10 s-1下的高温变形行为.在同一温度下,22MnB5的断裂应变随应变速率增加而呈现增加趋势,温度升高加剧这种趋势.建立了耦合损伤基于位错密度的统一黏塑性本构模型,该模型考虑了高温变形中损伤的演化规律,能够描述了应力-应变曲线后期的陡降段.利用遗传算法确定并优化该本构模型中的材料常数,所得材料常数确定的本构模型能够较好地预测22MnB5高温拉伸变形下的流变应力,并能较好地描述材料损伤演化规律.   相似文献   

15.
采用Gleebl于1500热模拟试验机研究γ-TiAl合金在1000~1 100℃、应变速率在0.01~1s-1的热变形特性,分析了流动应力与热力参数的关系,并建立了γ-TiAl合金在热态变形过程中峰值应力和本构方程模型.结果表明,在试验条件范围内,只有当应变速率为0.01 s-1时,才会发生完全动态再结晶;并且,温度...  相似文献   

16.
随着精密成形技术的发展,对热锻工艺的要求越来越严格,采用建立材料的物理模型及热加工图这一方法来优化最佳工艺条件,为实现产品的质量精确控制提供了科学保障。通过Gleeble-3800热模拟试验机对20Cr Mn Ti H钢在变形温度为850~1 150℃,应变速率为0.01~10 s~(-1)条件下进行等温热压缩试验,研究了20Cr Mn Ti H钢的热压缩变形特性,采用Zener-Hollomon参数法建立了20Cr Mn Ti H钢高温塑性变形的物理模型;并以热压缩试验为基础,绘制了20Cr Mn Ti H钢的三维热加工图并进行分析,确定了该钢的最佳热成形工艺参数。通过流变曲线可以看出,20Cr Mn Ti H钢在热成形过程中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随变形温度的升高而降低;由热加工图分析得到了该钢在试验参数范围内较优的热加工工艺参数,加工温度为900~1 025℃,应变速率为0.01~0.2 s~(-1)。  相似文献   

17.
建立了316LN超低碳控氮不锈钢管道的热加工图,并确立了最适宜热加工的工艺范围。利用Gleeble-3500热模拟实验机进行热压缩实验,用以模拟316LN超低碳控氮不锈钢的热加工过程。实验的温度范围是1 173~1 473 K,实验的应变速率范围是0.001~1 s-1。利用热压缩模拟实验得到的真应力-真应变数据,分别绘制出了材料能量耗散效率图和材料失稳图,并将二者叠加绘制出了316LN超低碳控氮不锈钢的加工图。从绘制出的图形可以看出,当温度为1 375~1 450 K、应变速率为0.01~0.1 s-1时,该材料的能量耗散效率达到最大值41%,此时发生了明显的动态再结晶。因此,该区域被确定为316LN超低碳控氮不锈钢热加工的最佳工作范围。  相似文献   

18.
生物医用Ti-6Al-7Nb合金高温变形行为研究   总被引:2,自引:0,他引:2  
金哲  张万明 《稀有金属》2012,36(2):218-223
为了研究用于外科植入生物材料Ti-6Al-7Nb合金的热变形行为,利用Gleeble 2000热模拟实验机对Ti-6Al-7Nb合金在750~900℃温度范围和0.001~10.000 s-1应变速率范围内进行等温热压缩实验,试验在氩气保护下进行,采用金相显微镜和透射电镜观察热变形后的组织;通过计算变形激活能分析Ti-6Al-7Nb合金在热压缩过程中的变形机制。结果表明:流变应力在经历加工硬化阶段后均表现出流变软化现象,在较低应变速率ε=0.001~0.100 s-1时,材料的软化主要受α相动态再结晶影响;而在较高应变速率ε=1~10 s-1时,材料基本不发生再结晶,其软化是由于钛合金在变形过程中的绝热效应造成的。通过Arrhenius方程计算出合金在750,800,850和900℃下的变形激活能分别为209.25,196.01,194.01和130.40 kJ.mol-1;在750~850℃下的激活能接近于α-Ti的自扩散激活能(200 kJ.mol-1),表明在750~850℃的变形由α-Ti自扩散参与的动态再结晶控制;在900℃下激活能略低于β-Ti的自扩散激活能(160 kJ.mol-1),说明在900℃下的变形机制由β相的动态回复控制。综合考虑变形行为与组织细化因素,温度在750~850℃,变形速率在0.01~0.10 s-1范围为良性热加工区域。  相似文献   

19.
 含铜奥氏体不锈钢具有优异的抗菌性能而广泛应用在食品加工、医疗等领域,然而铜的加入会显著影响不锈钢的加工性能。用Gleeble-3800热模拟试验机对含铜4.35%奥氏体抗菌不锈钢进行了单道次等温热压缩试验,研究了不锈钢在变形温度为900~1 150 ℃、应变速率为0.01~10 s-1和变形量为50%下的高温变形行为,构建了反映其材料特性的本构方程,使用金相显微镜观察了热变形后的微观组织,分析了各变形工艺下的微观组织演化规律,为含铜不锈钢的加工成型工艺及组织优化提供了理论参考。结果表明,4.35%Cu-304L钢的流动应力对变形工艺是敏感的,应力随着变形温度的升高和应变速率的降低而减小。采用得到的应力应变曲线建立了一种基于Arrhenius的5阶多项式拟合的应变补偿本构模型,根据此模型计算了相关系数R和平均相对误差AARE分别为0.972和9.03%,这表明所构建模型可以准确地反映含铜不锈钢的流动行为。结合微观组织发现较高的温度和较快的应变速率有利于再结晶的发生,由于0.01 s-1低应变速率提供的变形能低,在变形温度为1 100 ℃、应变速率为0.01 s-1时仍存在初始变形晶粒;在变形温度为900 ℃、应变速率为10 s-1下的晶粒畸变严重,且存在明显的由位错塞积形成的变形带,该变形条件下易导致裂纹的发生;在变形温度为1 150 ℃、应变速率为1和10 s-1下晶粒细化且均为等轴晶,这表明发生了完全再结晶。因此,针对4.35%铜不锈钢应考虑以变形温度为1 150 ℃、应变速率为1和10 s-1作为其热加工范围。  相似文献   

20.
采用Gleeble 3800热模拟实验机研究了Monel K-500合金在变形温度为850~1 100℃,应变速率为0.01~10s-1时的高温流变行为,测定了合金在不同条件下的流变应力曲线。结果表明,最大压缩变形量对合金的流变行为影响不大;变形温度相同时,合金在应变速率为0.1s-1时取得最大峰值应变;根据Arrhenius模型得到了合金的热变形本构方程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号