首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Calcium channel beta subunits have profound effects on how alpha1 subunits perform. In this article we summarize our present knowledge of the primary structures of beta subunits as deduced from cDNAs and illustrate their different properties. Upon co-expression with alpha1 subunits, the effects of beta subunits vary somewhat between L-type and non-L-type channels mostly because the two types of channels have different responses to voltage which are affected by beta subunits, such as long-lasting prepulse facilitation of alpha1C (absent in alpha1E) and inhibition by G protein betagamma dimer of alpha1E, absent in alpha1C. One beta subunit, a brain beta2a splice variant that is palmitoylated, has several effects not seen with any of the others, and these are due to palmitoylation. We also illustrate the finding that functional expression of alpha1 in oocytes requires a beta subunit even if the final channel shows no evidence for its presence. We propose two structural models for Ca2+ channels to account for "alpha1 alone" channels seen in cells with limited beta subunit expression. In one model, beta dissociates from the mature alpha1 after proper folding and membrane insertion. Regulated channels seen upon co-expression of high levels of beta would then have subunit composition alpha1beta. In the other model, the "chaperoning" beta remains associated with the mature channel and "alpha1 alone" channels would in fact be alpha1beta channels. Upon co-expression of high levels of beta the regulated channels would have composition [alpha1beta]beta.  相似文献   

2.
We have shown previously that the Ca2+ channel beta3 subunit is capable of modulating tonic G-protein inhibition of alpha1A and alpha1B Ca2+ channels expressed in oocytes. Here we determine the modulatory effect of the Ca2+ channel beta3 subunit on M2 muscarinic receptor-activated G-protein inhibition and whether the beta3 subunit modulates the G-protein sensitivity of alpha1A and alpha1B currents equivalently. To compare the relative inhibition by muscarinic activation, we have used successive ACh applications to remove the large tonic inhibition of these channels. We show that the resulting rebound potentiation results entirely from the loss of tonic G-protein inhibition; although the currents are temporarily relieved of tonic inhibition, they are still capable of undergoing inhibition through the muscarinic pathway. Using this rebound protocol, we demonstrate that the inhibition of peak current amplitude produced by M2 receptor activation is similar for alpha1A and alpha1B calcium currents. However, the contribution of the voltage-dependent component of inhibition, characterized by reduced inhibition at very depolarized voltage steps and the relief of inhibition by depolarizing prepulses, was slightly greater for the alpha1B current than for the alpha1A current. After co-expression of the beta3 subunit, the sensitivity to M2 receptor-induced G-protein inhibition was reduced for both alpha1A and alpha1B currents; however, the reduction was significantly greater for alpha1A currents. Additionally, the difference in the voltage dependence of inhibition of alpha1A and alpha1B currents was heightened after co-expression of the Ca2+ channel beta3 subunit. Such differential modulation of sensitivity to G-protein modulation may be important for fine tuning release in neurons that contain both of these Ca2+ channels.  相似文献   

3.
Run-down of L-type Ca2+ channels in CHO cells stably expressing alpha 1c, alpha 1c beta 1a, or alpha 1c beta 1a alpha 2 delta gamma subunits was studied using the patch-clamp technique (single channel recording). The channel activity (NPo) of alpha 1c channels was increased 4- and 8-fold by coexpression with beta 1a and beta 1a alpha 2 delta gamma, respectively. When membranes containing channels composed of different subunits were excised into basic internal solution, the channel activity exhibited run-down, the time-course of which was independent of the subunit composition. The run-down was restored by the application of calpastatin (or calpastatin contained in cytoplasmic P-fraction) + H-fraction (a high molecular mass fraction of bovine cardiac cytoplasm) + 3 mM ATP, which has been shown to reverse the run-down in native Ca2+ channels in the guinea-pig heart. The restoration level was 64.7, 63.5, and 66.4% for channels composed of alpha 1c, alpha 1c beta 1a, and alpha 1c beta 1a alpha 2 delta gamma, respectively, and was thus also independent of the subunit composition. We conclude that run-down of L-type Ca2+ channels occurs via the alpha 1 subunit and that the cytoplasmic factors maintaining Ca2+ channel activity act on the alpha 1 subunit.  相似文献   

4.
The Ca2+ channel beta subunit has been shown to reduce the magnitude of G-protein inhibition of Ca2+ channels. However, neither the specificity of this action to different forms of G-protein inhibition nor the mechanism underlying this reduction in response is known. We have reported previously that coexpression of the Ca2+ channel beta3 subunit causes M2 muscarinic receptor-mediated inhibition of alpha1B Ca2+ currents to become more voltage-dependent. We report here that the beta3 subunit increases the rate of relief of inhibition produced by a depolarizing prepulse and also shifts the voltage dependency of this relief to more hyperpolarized voltages; these effects are likely to be responsible for the reduction of inhibitory response of alpha1B channels to G-protein-mediated inhibition seen after coexpression of the Ca2+ channel beta3 subunit. Additionally, the beta3 subunit alters the rate and voltage dependency of relief of the inhibition produced by coexpressed Gbeta1gamma1, in a manner similar to the changes it produces in relief of M2 receptor-induced inhibition. We conclude that the Ca2+ channel beta3 subunit reduces the magnitude of G-protein inhibition of alpha1B Ca2+ channels by enhancing the rate of dissociation of the G-protein betagamma subunit from the Ca2+ channel alpha1B subunit.  相似文献   

5.
In comparison to the well characterized role of the principal subunit of voltage-gated Ca2+ channels, the pore-forming, antagonist-binding alpha1 subunit, considerably less is understood about how beta subunits contribute to neuronal Ca2+ channel function. We studied the role of the Ca2+ channel beta3 subunit, the major Ca2+ channel beta subunit in neurons, by using a gene-targeting strategy. The beta3 deficient (beta3-/-) animals were indistinguishable from the wild type (wt) with no gross morphological or histological differences. However, in sympathetic beta3-/- neurons, the L- and N-type current was significantly reduced relative to wt. Voltage-dependent activation of P/Q-type Ca2+ channels was described by two Boltzmann components with different voltage dependence, analogous to the "reluctant" and "willing" states reported for N-type channels. The absence of the beta3 subunit was associated with a hyperpolarizing shift of the "reluctant" component of activation. Norepinephrine inhibited wt and beta3-/- neurons similarly but the voltage sensitive component was greater for N-type than P/Q-type Ca2+ channels. The reduction in the expression of N-type Ca2+ channels in the beta3-/- mice may be expected to impair Ca2+ entry and therefore synaptic transmission in these animals. This effect may be reversed, at least in part, by the increase in the proportion of P/Q channels activated at less depolarized voltage levels.  相似文献   

6.
The physiological and pharmacological properties of the alpha 1E calcium (Ca) channel subtype do not exactly match any of the established categories described for native neuronal Ca currents. Many of the key diagnostic features used to assign cloned Ca channels to their native counterparts, however, are dependent on a number of factors, including cellular environment, beta subunit coexpression, and modulation by second messengers and G-proteins. Here, by examining the intrinsic pore characteristics of a family of transiently expressed neuronal Ca channels, we demonstrate that the permeation properties of alpha 1E closely resemble those described for a subset of low-threshold Ca channels. The alpha 1A (P-/Q-type), alpha 1B (N-type), and alpha 1C (L-type) high-threshold Ca channels all exhibit larger whole-cell currents with barium (Ba) as the charge carrier as compared with Ca or strontium (Sr). In contrast, macroscopic alpha 1E currents are largest in Sr, followed by Ca and then Ba. The unique permeation properties of alpha 1E are maintained at the single-channel level, are independent of the nature of the expression system, and are not affected by coexpression of alpha 2 and beta subunits. Overall, the permeation characteristics of alpha 1E are distinct from those described for R-type currents and share some similarities with native low-threshold Ca channels.  相似文献   

7.
The origin of Ibetanull, the Ca2+ current of myotubes from mice lacking the skeletal dihydropyridine receptor (DHPR) beta1a subunit, was investigated. The density of Ibetanull was similar to that of Idys, the Ca2+ current of myotubes from dysgenic mice lacking the skeletal DHPR alpha1S subunit (-0.6 +/- 0.1 and -0.7 +/- 0.1 pA/pF, respectively). However, Ibetanull activated at significantly more positive potentials. The midpoints of the GCa-V curves were 16.3 +/- 1.1 mV and 11.7 +/- 1.0 mV for Ibetanull and Idys, respectively. Ibetanull activated significantly more slowly than Idys. At +30 mV, the activation time constant for Ibetanull was 26 +/- 3 ms, and that for Idys was 7 +/- 1 ms. The unitary current of normal L-type and beta1-null Ca2+ channels estimated from the mean variance relationship at +20 mV in 10 mM external Ca2+ was 22 +/- 4 fA and 43 +/- 7 fA, respectively. Both values were significantly smaller than the single-channel current estimated for dysgenic Ca2+ channels, which was 84 +/- 9 fA under the same conditions. Ibetanull and Idys have different gating and permeation characteristics, suggesting that the bulk of the DHPR alpha1 subunits underlying these currents are different. Ibetanull is suggested to originate primarily from Ca2+ channels with a DHPR alpha1S subunit. Dysgenic Ca2+ channels may be a minor component of this current. The expression of DHPR alpha1S in beta1-null myotubes and its absence in dysgenic myotubes was confirmed by immunofluorescence labeling of cells.  相似文献   

8.
In this study, we report that palmitoylation was a critical determinant of the subcellular localization of the rat beta2a subunit of voltage-dependent calcium channels. Immunohistochemical staining of transfected cells revealed that a palmitoylation-deficient beta2a subunit exhibited a diffuse intracellular staining pattern, in contrast to the plasma membrane distribution seen with the wild-type beta2a subunit. Unexpectedly, mutations in regions distal to the palmitoylation sites at Cys3 and Cys4 affected palmitoylation of the beta2a protein. Mutations in an src homology 3 motif of the beta2a subunit affected both palmitoylation and subcellular localization of the beta2a protein. A mutation in the beta interaction domain, which disrupted interactions between the expressed alpha1 and beta subunits, also resulted in a decreased palmitoylation and diffuse intracellular localization of the beta2a protein. Studies of chimeric proteins revealed that the 16-amino acid N terminus of the beta2a subunit was sufficient to confer palmitoylation to the nonpalmitoylated beta1b and beta3 isoforms. However, palmitoylation of chimeric beta subunits was by itself insufficient to restore the plasma membrane localization observed with the wild-type beta2a protein. Treatment of transfected cells with brefeldin A increased the amount of palmitic acid incorporated in the beta2a protein, suggesting that palmitoylation of beta2a occurs during or shortly after protein synthesis. Two other beta2 variants, the rabbit beta2a and beta2b, which lack the palmitoylation sties at Cys3 and Cys4, exhibited a diffuse intracellular staining pattern and were not palmitoylated.  相似文献   

9.
Modulation of neuronal voltage-gated Ca channels has important implications for synaptic function. To investigate the mechanisms of Ca channel modulation, we compared the G-protein-dependent facilitation of three neuronal Ca channels. alpha1A, alpha1B, or alpha1E subunits were transiently coexpressed with alpha2-deltab and beta3 subunits in HEK293 cells, and whole-cell currents were recorded. After intracellular dialysis with GTPgammaS, strongly depolarized conditioning pulses facilitated currents mediated by each Ca channel type. The magnitude of facilitation depended on current density, with low-density currents being most strongly facilitated and high-density currents often lacking facilitation. Facilitating depolarizations speeded channel activation approximately 1.7-fold for alpha1A and alpha1B and increased current amplitudes by the same proportion, demonstrating equivalent facilitation of G-protein-inhibited alpha1A and alpha1B channels. Inactivation typically obscured facilitation of alpha1E current amplitudes, but the activation kinetics of alpha1E currents showed consistent and pronounced G-protein-dependent facilitation. The onset and decay of facilitation had the same kinetics for alpha1A, alpha1B, and alpha1E, suggesting that Gbeta gamma dimers dissociate from and reassociate with these Ca channels at very similar rates. To investigate the structural basis for N-type Ca channel modulation, we expressed a mutant of alpha1B missing large segments of the II-III loop and C terminus. This deletion mutant exhibited undiminished G-protein-dependent facilitation, demonstrating that a Gbeta gamma interaction site recently identified within the C terminus of alpha1E is not required for modulation of alpha1B.  相似文献   

10.
We investigated the nature and structural requirements for Ca(2+)-dependent inactivation of cardiac L-type Ca2+ channel. Investigation of subunit requirements indicates that the interaction of alpha 1 subunit with ancillary subunits, especially beta subunit, is important for this property. Replacement of the putative cytoplasmic regions of the cardiac alpha 1 subunit with skeletal muscle counterparts eliminates Ca(2+)-dependent inactivation, indicating that the site regulated by Ca2+ resides in the cytoplasmic region of the alpha 1 subunit. Deletion of the carboxy-terminal region of the cardiac alpha 1 subunit does not eliminate this property, suggesting that the modulation by protein kinase A may not be involved in this mechanism. Single amino acid substitution that strongly reduces Ca2+ selectivity of Ca2+ channels also eliminates Ca(2+)-dependent inactivation, suggesting the close link between the ion selectivity and Ca(2+)-dependent inactivation.  相似文献   

11.
The developmental expression of macroscopic Ca2+-activated K+ currents (IK[Ca]) in chicken ciliary ganglion (CG) neurons is dependent in part on trophic factors released from preganglionic nerve terminals. Neuregulins are expressed in the preganglionic neurons that innervate the chicken CG and are therefore plausible candidates for this activity. Application of 1 nM beta1-neuregulin peptide for 12 hr evokes a large (7- to 10-fold) increase in IK[Ca] in embryonic day 9 CG neurons, even in the presence of a translational inhibitor. A similar posttranslational effect is produced by high concentrations (10 nM) of epidermal growth factor and type alpha transforming growth factor but not by 10 nM alpha2-neuregulin peptide or by neurotrophins at 40 ng.ml-1. beta1-neuregulin treatment for 12 hr also confers Ca2+ sensitivity onto large-conductance (285 pS) K+ channels observed in inside-out patches. beta-Neuregulins have no effect on voltage-activated Ca2+ currents of CG neurons. These data support the hypothesis that beta-neuregulins mediate the trophic effects of preganglionic nerve terminals on the electrophysiological differentiation of developing CG neurons.  相似文献   

12.
Voltage-gated Ca2+ channels in vertebrates comprise at least seven molecular subtypes, each of which produces a current with distinct kinetics and pharmacology. Although several invertebrate Ca2+ channel alpha1 subunits have also been cloned, their functional characteristics remain unclear, as heterologous expression of a full-length invertebrate channel has not previously been reported. We have cloned a cDNA encoding the alpha1 subunit of a voltage-gated Ca2+ channel from the scyphozoan jellyfish Cyanea capillata, one of the earliest existing organisms to possess neural and muscle tissue. The deduced amino acid sequence of this subunit, named CyCaalpha1, is more similar to vertebrate L-type channels (alpha1S, alpha1C, and alpha1D) than to non-L-type channels (alpha1A, alpha1B, and alpha1E) or low voltage-activated channels (alpha1G). Expression of CyCaalpha1 in Xenopus oocytes produces a high voltage-activated Ca2+ current that, unlike vertebrate L-type currents, is only weakly sensitive to 1,4-dihydropyridine or phenylalkylamine Ca2+ channel blockers and is not potentiated by the agonist S(-)-BayK 8644. In addition, the channel is less permeable to Ba2+ than to Ca2+ and is more permeable to Sr2+. CyCaalpha1 thus represents an ancestral L-type alpha1 subunit with significant functional differences from mammalian L-type channels.  相似文献   

13.
Ca2+ channels in distinct subcellular compartments of neurons mediate voltage-dependent Ca2+ influx, which integrates synaptic responses, regulates gene expression, and initiates synaptic transmission. Antibodies that specifically recognize the alpha1 subunits of class A, B, C, D, and E Ca2+ channels have been used to investigate the localization of these voltage-gated ion channels on spinal motor neurons, interneurons, and nerve terminals of the adult rat. Class A P/Q-type Ca2+ channels were present mainly in a punctate pattern in nerve terminals located along the cell bodies and dendrites of motor neurons. Both smooth and punctate staining patterns were observed over the surface of the cell bodies and dendrites with antibodies to class B N-type Ca2+ channels, indicating the presence of these channels in the cell surface membrane and in nerve terminals. Class C and D L-type and class E R-type Ca2+ channels were distributed mainly over the cell soma and proximal dendrites. Class A P/Q-type Ca2+ channels were present predominantly in the presynaptic terminals of motor neurons at the neuromuscular junction. Occasional nerve terminals innervating skeletal muscles from the hindlimb were labeled with antibodies against class B N-type Ca2+ channels. Staining of the dorsal laminae of the rat spinal cord revealed a complementary distribution of class A and class B Ca2+ channels in nerve terminals in the deeper versus the superficial laminae. Many of the nerve terminals immunoreactive for class B N-type Ca2+ channels also contained substance P, an important neuropeptide in pain pathways, suggesting that N-type Ca2+ channels are predominant at synapses that carry nociceptive information into the spinal cord.  相似文献   

14.
15.
The beta subunits of voltage-dependent calcium channels, exert marked regulatory effects on the biophysical and pharmacological properties of this diverse group of ion channels. However, little is known about the comparative neuronal expression of the four classes of beta genes in the CNS. In the current investigation we have closely mapped the distribution of beta1, beta2, beta3 and beta4 subunits in the human cerebellum by both in situ messenger RNA hybridization and protein immunohistochemistry. To our knowledge, these studies represent the first experiments in any species in which the detailed localization of each beta protein has been comparatively mapped in a neuroanatomically-based investigation. The data indicate that all four classes of beta subunits are found in the cerebellum and suggest that in certain neuronal populations they may each be expressed within the same cell. Novel immunohistochemical results further exemplify that the beta voltage-dependent calcium channel subunits are regionally distributed in a highly specific manner and studies of Purkinje cells indicate that this may occur at the subcellular level. Preliminary indication of the subunit composition of certain native voltage-dependent calcium channels is suggested by the observation that the distribution of the beta3 subunit in the cerebellar cortex is identical to that of alpha(1E). Our cumulative data are consistent with the emerging view that different native alpha1/beta subunit associations occur in the CNS.  相似文献   

16.
Voltage-gated calcium channels are composed of a main pore-forming alpha1 moiety, and one or more auxiliary subunits (beta, alpha2 delta) that modulate channel properties. Because modulatory properties may vary greatly with different channels, expression systems, and protocols, it is advantageous to study subunit regulation with a uniform experimental strategy. Here, in HEK 293 cells, we examine the expression and activation gating of alpha1E calcium channels in combination with a beta (beta1-beta4) and/or the alpha2 delta subunit, exploiting both ionic- and gating-current measurements. Furthermore, to explore whether more than one auxiliary subunit can concomitantly specify gating properties, we investigate the effects of cotransfecting alpha2delta with beta subunits, of transfecting two different beta subunits simultaneously, and of COOH-terminal truncation of alpha1E to remove a second beta binding site. The main results are as follows. (a) The alpha2delta and beta subunits modulate alpha1E in fundamentally different ways. The sole effect of alpha2 delta is to increase current density by elevating channel density. By contrast, though beta subunits also increase functional channel number, they also enhance maximum open probability (Gmax/Qmax) and hyperpolarize the voltage dependence of ionic-current activation and gating-charge movement, all without discernible effect on activation kinetics. Different beta isoforms produce nearly indistinguishable effects on activation. However, beta subunits produced clear, isoform-specific effects on inactivation properties. (b) All the beta subunit effects can be explained by a gating model in which subunits act only on weakly voltage-dependent steps near the open state. (c) We find no clear evidence for simultaneous modulation by two different beta subunits. (d) The modulatory features found here for alpha1E do not generalize uniformly to other alpha1 channel types, as alpha1C activation gating shows marked beta isoform dependence that is absent for alpha1E. Together, these results help to establish a more comprehensive picture of auxiliary-subunit regulation of alpha1E calcium channels.  相似文献   

17.
We report several unexpected findings that provide novel insights into the properties and interactions of the alpha 1 and beta subunits of dihydropyridine-sensitive L-type channels. First, the beta 2a subunit was expressed as multiple species of 68-72 kDa; the 70-72-kDa species arose from post-translational modification. Second, cell fractionation and immunocytochemical studies indicated that the hydrophilic beta 2a subunit, when expressed alone, was membrane-localized. Third, the beta 2a subunit increased the membrane localization of the alpha 1 subunit and the number of cells expressing L-type Ca2+ currents, without affecting the total amount of the expressed alpha 1C subunit. Expression of maximal currents in alpha 1C/beta 2a cotransfected cells paralleled the time course of expression of the beta subunit. Taken together, these results suggest that the beta subunit plays multiple roles in the formation, stabilization, targeting, and modulation of L-type channels.  相似文献   

18.
Currents arising from human alpha1E and alpha1Ebeta3 Ca2+ channel subunits expressed in HEK-293 cells were examined with whole-cell recording methods and compared to properties of T-current in DRG neurons studied under identical ionic conditions. Coexpression of alpha1E subunit with the beta3 subunit shifted activation to more negative potentials. Activation and deactivation of both variants were comparable at most voltages, with deactivation becoming faster, but less voltage-dependent, at more negative potentials. The inactivation time course for alpha1E and alpha1Ebeta3 currents was best described by at least two exponential components. Recovery from inactivation was markedly voltage-dependent and similar for both constructs. In comparison to alpha1E and alpha1Ebeta3 constructs, T current activation was shifted to more negative potentials, activation was typically slower, deactivation exhibited a steeper voltage-dependence, and recovery from inactivation was less voltage-dependent. Over most of the activation range, native T current inactivated more completely and in a single exponential fashion. Despite some pharmacological similarities (e.g. octanol, barbiturates) between alpha1E and T-type currents, aspects of blockade by amiloride and phenytoin appear to distinguish alpha1E current from T-type currents. The results define several distinguishing features of alpha1E currents that distinguish them from native T-type currents.  相似文献   

19.
Cardiac inotropic effects of beta adrenergic agonists occur mainly through an increase in L-type (class C) calcium channel activity. This response has been attributed to phosphorylation of the L-type Ca channel, or a closely associated protein, by the cAMP-dependent protein kinase A (PKA). Among the three subunits forming the cardiac L-type Ca channel (alpha 1, beta and alpha 2-delta), biochemical studies have revealed that two subunits, alpha 1 and beta, are phosphorylated in vitro by protein kinase A, the alpha 1 subunit being the primary target. However, attempts to reconstitute the cAMP-dependent regulation of the expressed class C Ca channel, either in Xenopus oocytes or in cell lines, have provided contradictory results. We were unable to detect cAMP-dependent modulation of class C alpha 1 subunit Ca channels expressed in Xenopus oocytes, even when coinjected with auxiliary subunits beta and alpha 2-delta. Nevertheless, activity of Ca channels recorded from cardiac-mRNA injected oocytes was potentiated by injection of cAMP or PKA, even when expression of the beta subunit was suppressed using antisense oligonucleotide. Taken together, these results indicate that cAMP-dependent regulation does not exclusively involve the alpha 1 and the beta subunits of the Ca channel and suggest that unidentified protein(s), expressed in cardiac tissue, are most likely necessary.  相似文献   

20.
The past years have seen some significant advances in our understanding of the functional and molecular properties of voltage-dependent Ca2+ channels in arterial smooth muscle. Molecular cloning and expression studies together with experiments on native voltage-dependent Ca2+ channels revealed that these channels are built upon a molecular structure with properties appropriate to function as the main source for Ca2+ entry into arterial smooth muscle cells. This Ca2+ entry regulates intracellular free Ca2+, and thereby arterial tone. We summarize several avenues of recent research that should provide significant insights into the functioning of voltage-dependent Ca2+ channels under conditions that occur in arterial smooth muscle. These experiments have identified important features of voltage-dependent Ca2+ channels, including the steep steady-state voltage-dependence of the channel open probability at steady physiological membrane potentials between -60 and -30 mV, and a relatively high permeation rate at physiological Ca2+ concentrations, being about one million Ca2+ ions/s at -50 mV. This calcium permeation rate seems to be a feature of the pore-forming Ca2+ channel alpha1 subunit, since it was identical for native channels and the expressed alpha1 subunit alone. The channel activity is regulated by dihydropyridines, vasoactive hormones and intracellular signaling pathways. While the membrane potential of smooth muscle cells primarily regulates arterial muscle tone through alterations in Ca2+ influx through dihydropyridine-sensitive voltage-dependent ('L-type') Ca2+ channels, the role of these channels in the differentiation and proliferation of vascular smooth muscle cells is less clear. We discuss recent findings suggesting that other Ca2+ permeable ion channels might be important for the control of Ca2+ influx in dedifferentiated vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号