首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Eu2+-doped bromophosphateapatite Sr5(PO4)3Br phosphors were synthesized by the conventional high-temperature solid-state reaction. The crystal structure and luminescence properties of the phosphors, as well as their thermal stability and CIE chromaticity coordinates were systematically investigated. Photoluminescence spectra of Sr5(PO4)3Br:Eu2+ exhibit a single blue emission at 450 nm under the excitation of 345 nm, which is ascribed to the 4f–5d transition of Eu2+. The phosphor shows very good thermal stability. The CIE color coordinates are very close to those of BaMgAl10O17:Eu2+ (BAM). All the properties indicate that the blue-emitting Sr5(PO4)3Br:Eu2+ phosphor has potential application in white LEDs.  相似文献   

2.
Langbeinite type compounds are a large kind of oxometallate with good flexibility structure.Herein,we synthesized a new langbeinite type compound K_2 Dy_(1.5)Ta_(0.5)(PO_4)_3,in which the Dy~(3+) and Ta~(5+) were blended to occupy the same crystallographic sites.Simultaneously,solid solutions of K_2 Dy_(1.5)_(-x)Eu_xTa_(0.5)(PO_4)_3(x=0-1.5) were prepared and their photoluminescence properties were investigated.Due to energy transfer from Dy~(3+) to Eu~(3+),both Dy~(3+) and Eu~(3+) characteristic emissions are observed under 393 nm light excitation.The emitting color of K_2 Dy_(1.5-x)Eu_xTa_(0.5)(PO_4)_3 turns from green through yellow to red by simply adjusting the Eu~(3+) concentration from 0 to 0.4.Moreover,K_2 Dy_(1.48)Eu_(0.02)Ta_(0.5)(PO_4)_3 phosphor possesses excellent fluorescence thermal stability and exhibits zero thermal quenching at 150 ℃.These results manifest that K_2 Dy_(1.5-x)Eu_xTa_(0.5)(PO_4)_3 solutions are promising multi-color emitting phosphors candidate for near-UV LED.  相似文献   

3.
Cyan-emitting Ca9NaGd2/3(PO4)7:Eu2+phosphors were synthesized via high temperature solid-state route.X-ray powder diffraction(XRD)and scanning electron microscopy(SEM)were used to verify the phase and morphology of the Ca9NaGd2/3(PO4)7:Eu2+(CNGP:Eu2+)phosphors.The as-obtained phosphor exhibits a broad excitation band of 250-420 nm,which is near the ultraviolet region.An intense asymmetric cyan emission at 496 nm corresponds to the 5 d-4 f transition of Eu2+.The multiplesite luminescent properties of Eu2+ions in CNGP benefit from versatile structure ofβ-Ca3(PO4)2 compounds.The effective energy transfer distance is 5.46 nm(through the spectral overlap calculation),validating that the resonant energy migration type is via dipole-dipole interaction mechanism.Compared to the initial one at room temperature,the luminescent intensity of CNGP:Eu2+phosphor can maintain 77%as it is heated up to 420 K.A white light-emitting diode(WLED)with excellent luminesce nt properties was successfully fabricated.Moreover,the CIE chromaticity coordinates of fabricated WLED driven by changing current just change slightly.  相似文献   

4.
Eu2+ and Dy3+ codoped(Ca,Sr)7(SiO3)6Cl2 yellow phosphors were successfully synthesized by self-flux method. The structure, morphology and photoluminescence properties were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM) and photoluminescence spectra. The as-prepared phosphor showed a broad emission spectrum centered at 550 nm for Eu2+single-doped phosphor, while located at 548–544 nm for the Eu2+, Dy3+ codoped samples under excitation at 380 nm light. The emission intensity was greatly improved when Dy3+ was doped into the(Ca,Sr)7(SiO3)6Cl2:Eu2+ system. The composition-optimized sample with 3 mol.% of Dy3+ and constant 10 mol.% of Eu2+ exhibited a 220% PL enhancement compared to the phosphor with 10 mol.% Eu2+ single-doped. Meanwhile, it was found that the quantum efficiency of phosphor namely(Ca,Sr)7(SiO3)6Cl2:3 mol.% Dy3+, 10 mol.% Eu2+ could get up to 24.6%. The synthesized yellow-emitting(Ca,Sr)7(SiO3)6Cl2:Dy3+,Eu2+ is a promising candidate as high-efficiency yellow phosphor for NUV-excited white LEDs.  相似文献   

5.
A single-phase full-color emitting phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+ was synthesized by the high temperature solid-state method. The phase formation, luminescence properties, thermal stability, and energy transfer from Eu2+ to Tb3+ and Eu2+ to Mn2+ in Sr2Ca2La(PO4)3O were investigated in details. Tunable emission color from blue to blueish green or orange can be observed under 365 nm near-ultraviolet excitation based on the energy transfer from Eu2+ to Tb3+ or Mn2+ ions by varying the ratio of Eu2+/Tb3+ or Eu2+/Mn2+ ions. White light was obtained with chromaticity coordinates of (0.3558, 0.3500) in the Sr2Ca2La(PO4)3O:0.04Eu2+,0.08Tb3+,0.40Mn2+ phosphor, suggesting their potential applications in white light emitting diodes.  相似文献   

6.
The powder samples of Ca9Sc(PO4)7:xDy^(3+)white emitting phosphors were prepared via a solid state reaction technique.The Ca9Sc(PO4)7:Dy3+samples were researched by using the GSAS Rietveld refinement and X-ray diffraction(XRD) methods,and SEM images and elemental maps were recorded.Under 350 nm excitatio n,the emission spectra of Ca9Sc(PO4)7:xDy3+samples have two obvious peaks and one weak peak at 484,572 and660 nm,corresponding to the characteristic electron transitions of(4F9/26H15/2,blue),(4F9/26H13/2,yellow) and(4F9/2→ 6 H11/2,red),respectively.The concentration quenching effect,decay lifetime and thermal quenching of the as-synthesized Ca9Sc(PO4)7:Dy3+samples were researched systematically.The Ca9Sc(PO4)7:0.02 Dy3+phosphor possesses a good thermal stability,of which the emission intensity at 423 K can maintain 79% of the initial value(273 K).In addition,through the study of the chro maticity coordinates of the Ca9Sc(PO4)7:0.02 Dy3+phosphor,it is found that it is located in the white region,and the Commission Internationalede L’Eclairage(CIE) chromaticity coordinates are(0.339,0.389),The above results show that Ca9Sc(PO4)7:xDy3+phosphors can be excellent candidate material for applications in NUV-excited white LEDs.  相似文献   

7.
SrAl2O4:Eu2+,Dy3+ hollow microspheres were successfully prepared through a facile and mild solvothermal co-precipitation combining with a postcalcining process.The structure and particle morphology were investigated by X-ray diffraction(XRD),scanning and transmission electron microscopy(SEM and TEM)pictures,respectively.The mechanism for the formation of spherical SrAl2O4:Eu2+,Dy3+ phosphor was preliminary presented.After being irradiated with ultraviolet(UV)light,the spherical phosphor emitted long-lasting green phosphorescence.Both the photoluminescence(PL)spectra and luminance decay,compared with that of commercial bulky powders,revealed that the phosphors had efficient luminescent and long lasting properties.It was considered that the SrAl2O4:Eu2+,Dy3+ hollow microspheres had promising long-lasting phosphorescence with potential scale-dependent applications in photonic devices.  相似文献   

8.
A blue phosphor Ca2PO4Cl:Eu2+ (CAP:Eu2+) was synthesized by solid state reaction. The Ca2PO4Cl:Eu2+ exhibited high quantum efficiency and excellent thermal stability. The luminescent intensity of Ca2PO4Cl:Eu2+ was found to be 128% under excitation at 380 nm, 149% under 400 nm, and 247% under 420 nm as high as that of BaMgAl10O17:Eu2+. The optimal doping concentration was observed to 11 mol.% of CAP:Eu2+. The energy transfer between Eu2+ ions in CAP were occurred via electric multipolar interaction, and the critical transfer distance was estimated to be 1.26 nm. A mixture of blue-emitting Ca2PO4Cl:Eu2+, green-emitting (Ba,Sr)2SiO4:Eu2+ and red-emitting CaAlSiN3:Eu2+ phosphors were selected in conjunction with 400 nm chip to fabricate white LED devices. The average color-rendering index Ra and correlated color temperature (Tc) of the white LEDs were found to be 93.4 and 4590 K, respectively. The results indicated that it was a promising candidate as a blue-emitting phosphor for the near-UV white light-emitting diodes.  相似文献   

9.
In this study, novel yellow-emitting fluorophosphate NaCa3Bi(PO4)3F phosphors doped with different concentrations of Dy3+ ions were first obtained via high-temperature solid-state reaction. The crystal structure, phase purity, particle morphology, photoluminescence (PL) properties, thermal stability, and luminescence decay curves of the resulting phosphors were then characterized in detail. Under the excitation of 349 nm, the three dominant peaks of the NaCa3Bi(PO4)3F:Dy3+ are centered at 480 nm (4F9/2-6H15/2), 577 nm (4F9/2-6H13/2), and 662 nm (4F9/2-6H11/2). The optimal doping concentration of Dy3+ ions in the NaCa3Bi(PO4)3F:xDy3+ phosphors is x = 5 mol%. The phosphors show excellent thermal stability with high activation energy (Ea = 0.32 eV). Eventually, the synthesized white light-emitting diode (w-LED) demonstrates the Commission International de L'Eclairage (CIE) chromaticity coordinates of (0.341, 0.334), a good correlated color temperature (CCT) of 5083 K, and a high color rendering index (Ra) of 92. Revealing its potential as yellow-emitting phosphors, the feasibility of the fabricated apatite-type NaCa3Bi(PO4)3F:Dy3+ fluorophosphate phosphors was confirmed for w-LEDs.  相似文献   

10.
A series of Eu~(2+),Tb~(3+)-codoped Sr_3 Y(PO_4)_3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu~(2+), and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu~(2+),Tb~(3+) phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f~65 d~1→4 f~7 transition of Eu~(2+) ions and ~5 D_4→~7 F_5 transition of Tb~(3+) ions, respectively. Optimal doping concentrations of Eu~(2+) and Tb~(3+) in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu~(2+),Tb~(3+) phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.  相似文献   

11.
A series of novel red-emitting BaLiZn3(BO3)3:Eu3+ phosphors were synthesized through the high temperature solid state reaction method. The phase composition, crystal structure, morphology and photoluminescence property of the BaLiZn3(BO3)3:Eu3+ samples were systematically investigated. The phosphor can be efficiently excited by the near ultraviolet light (NUV) of 396 nm and blue light of 466 nm, and give out red light emission at 618 nm corresponding to the electric dipole transition (5D07F2). The optimal doping concentration of Eu3+ ions in BaLiZn3(BO3)3 is determined to be about 3 mol%, and the concentration-quenching phenomenon arise from the electric dipole–dipole interaction. The temperature dependent luminescence behavior of BaLiZn3(BO3)3:0.03Eu3+ phosphor exhibits its good thermal stability, and the activation energy for thermal quenching characteristics is calculated to be 0.1844 eV. The decay lifetime of the BaLiZn3(BO3)3:0.03Eu3+ is measured to be 1.88 ms. These results suggest that the BaLiZn3(BO3)3:Eu3+ phosphors have the potential application as a red component in white light emitting diodes (WLEDs) with NUV or blue chips.  相似文献   

12.
A series of red phosphors Ca10Li (PO4)7:Eu3+ were synthesized by high temperature solid-state reaction method. Their luminescence properties were characterized by means of photoluminescence excitation and emission spectra,CIE chromaticity and quantum efficiency. Results indicated that the phosphors could be effectively excited by the near ultraviolet (NUV) light (393 nm). The main emission peaks of the phosphor were ascribed to the transition 5D0-7F2 (613 and 617 nm) of Eu3+ ion when samples were excited by...  相似文献   

13.
A series of Gd5Si2BO13:Eu3+ and non-rare earth Bi3+ ions doped Gd5Si2BO13:Eu3+ phosphors was successfully synthesized via high-temperature solid-state method,and the as-obtained phosphors were studied on their phase structures,luminescence characteristics,thermal stability and luminescence lifetime.Transient fluorescence spectroscopy data show that the addition of Bi3+ can obviously enha...  相似文献   

14.
White light-emitting diodes (WLEDs) fabricated by single-phase full color emitting phosphor are an emerging solution for health lighting. The crystallographic site occupation of activators in a proper host lattice is crucial for sophisticated design of such phosphor. Here, we report a high quality white light-emitting phosphor Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ with spectral distribution covering whole visible region. Blue light emission originates from Ce3+ ions occupying preferentially Ba2+ site by controlling synthesis conditions. Green and red lights are obtained from Eu2+ occupying Ba2+ (and Ca2+) site and Mn2+ occupying Ca2+ site, respectively. In this triple-doped phosphor, strong red emission with a low concentration of Mn2+ is realized by the efficient energy transfer from Ce3+ and Eu2+ to Mn2+. Furthermore, high quality white light is accomplished by properly tuning the relative doping amount of Ce3+(K+)/Eu2+/Mn2+ based on efficient simultaneous energy transfer. The results indicate that Ba2Ca(BO3)2:Ce3+(K+),Eu2+,Mn2+ is a promising white light-emitting phosphor in WLEDs application.  相似文献   

15.
Wide color gamut(WCG) backlight for liquid crystal display(LCD) utilizing white light-emitting diodes(LED) has attracted considerable attention for their high efficiency and color reduction.In this review,recent developments in crystal structure,luminescence and applications of phosphors for wide color gamut LED backlight are introduced.As novel red phosphors,Mn~(4+)activate fluoride and aluminate phosphors are advanced in quantum efficiency,thermal quenching and color saturation for their characteristic spectrum with broad excitation band and linear emission.The crystal structure and fluorescence properties of Mn~(4+)doped fluosilicate,fluorogermanate,fluotitanate,as well as Sr_4 Al_(14)O_(25),CaAl_(12)O_(19) and BaMgAl_(10)O_(17) phosphors are discussed in detail.A serial of narrow-band red-emitting Eu~(2+),Eu~(3+)and Pr~(3+)-doped nitride silicates and molybdate phosphors are also introduced.Rare-earth-doped oxynitride and silicate green-emitting phosphors have attracted more and more attention because of the wide excitation,narrow emission,high quenching temperature,high quantum efficiency,such as β-sialon:Eu~(2+),Ba_3Si_6O_(12)N_2:Eu~(2+),MSi_2O_2N_2:Eu~(2+)(M=Ca,Sr,Ba),y-AlON:Mn~(2+)and Ca_3Sc_2Si_3O_(12):Ce~(3+).All above phosphors demonstrate their adaptability in wide color gamut LCD display.Especially for Mn~(4+)doped fluosilicate red phosphor and β-sialon:Eu~(2+)green phosphor.To achieve an ultra-high color gamut in white LED backlight and against the OLED,innovative narrow-band-emission red and green phosphor materials with independent intellectual property rights are continuously pursed.  相似文献   

16.
NaBaPO4:Eu2+,Er3+ phosphors and Ag nano-particles (NPs) were prepared by the solid-state reaction and chemical reduction method, respectively. The fluorescence spectra and decay curves demonstrate the effective energy transfer from Eu2+ to Er3+ and the existence of three-photon quantum-cutting through two-step cross-relaxation of Er3+. The quantum-cutting emission is peaked at 1534 nm with a broad excitation band centered at 352 nm. Plasmon-enhanced quantum-cutting of NaBaPO4:Eu2+,Er3+ phosphors was realized by decorating Ag NPs. The largest enhancement factor is 1.395. It is hopeful to improve the photovoltaic conversion efficiency of Ge solar cells by using this phosphor.  相似文献   

17.
Novel yellow-emitting phosphors of Dy~(3+)-doped double perovskite Ca_2 MgTeO_6 were synthesized by using a conventional high-temperature solid-state reaction.The phase purity,particle morphology,size distribution,elemental composition,luminescence properties,and luminescence decay curves of the resulting products were then analyzed in detail.The Ca2 MgTeO_6:Dy~(3+),Na~+ phosphors show three emission peaks after near-ultraviolet excitation at 350 nm,which correspond to ~4 F_(9/2)→~6 H_(11/2),~4 F_(9/2)→~6 H_(13/2),and ~4 F_(9/2)→~6 H_(13/2) transitions,respectively.Among them,the strongest peak is observed at 573 nm.The best doping content of Dy~(3+)in Ca_2 MgTeO_6:xDy~(3+),xNa~+ phosphors is x=5 mol%.The calculated critical distance of energy transfer between Dy~(3+) ions is 1.6 nm.Luminescence quenching is confirmed to be due to dipole-dipole interactions among Dy~(3+) ions.The phosphors show excellent thermal stability with high activation energy(0.27 eV).The Commission Internationale de l'Eclairage(CIE) chromaticity coordinates of the Ca_2 MgTeO_6 Dy~(3+),Na~+ phosphors are located in the yellow region.White light-emitting diodes(w-LEDs) were fabricated with a high color rendering index(R_a) of 88 and a good correlated color temperature(CCT) of 5440 K.All observed properties indicate that Ca_2 MgTeO_6:Dy~(3+),Na~+ phosphors have potential applications in display and photonic devices.  相似文献   

18.
The persistent phosphor SrAl2O4:Eu2+,Dy3+ is the subject of numerous investigations. One often neglected aspect is that in this phosphor, as well as in Sr4Al14O25:Eu2+,Dy3+, there are two different Sr2+ sites which can be occupied by the dopant Eu2+ ions. We first introduce a general scheme of possible energy transfers in these persistent phosphor materials including explicitly both europium ions. This scheme is used as a generic starting point to study experimentally specific pathways. We illustrate this application with the study of the effect of excitation wavelength (444 and 382 nm) on the afterglow of differently doped SrAl2O4:Eu2+,Dy3+ samples, as well as on the emission decay curves. With the same excitation intensity under 444 nm excitation, the resulting afterglow intensity is stronger than under near UV excitation. At 382 nm, Eu2+ ions on both Sr2+ sites in SrAl2O4 are excited, but at room temperature the blue emission is quenched, leading to a loss of photons. The observed effects can further be associated with the ratio of Eu2+ ions and trap states which are modulated by the concentrations of Eu2+ and Dy3+ in SrAl2O4, as well as by temperature. Increasing the nominal Dy3+ content from 0.1 mol% to 0.5 mol% with respect to Sr results in the doubling of the integrated afterglow intensity and confirms thus that Dy3+ ions are indeed involved in the trapping process. The concentration of trap states is much lower than the concentration of Eu2+ ions, as even with low excitation densities, a plateau of integrated afterglow intensity (corresponding to the total number of accessible traps) is reached. We postulate that an important fraction of excited Eu2+ ions can potentially transfer their energy to trap states. Once that all traps are filled or in a dynamical filling-depletion process under illumination (with thermal and/or optical depletion processes), for the remaining Eu2+ a “normal” steady-state emission is observed. The luminescence decay curves at 520 nm measured at 77 K show a mono-exponential decay with a common lifetime of about 1140 ns for all 5 samples under 437 nm excitation, while under 375 nm excitation, a feed process originating from the energy transfer between Eu2+ ions is demonstrated. Under 375 nm excitation, the non-exponential decay observed at 440 nm can be quantitatively associated to a Förster energy transfer process with R0 = 1.58 (8) nm. For the overall understanding of the afterglow processes, it appears that one has to consider the individual contributions of all active ions on different lattice sites.  相似文献   

19.
In this work,combustion synthesis was used for the first time to fabricate a phosphor material with red emission for applications in solid-state white-light lamps.We synthesized a material with emission wavelength at λem=617 nm,excited under long UV-blue wavelength based on Eu3+,Tb3+-activated molybdates Li3Ba2(La1-x-yEuxTby)3(MoO4)8 with 0 ≤ x ≤1 and 0 ≤ y ≤ 1.A series of pow...  相似文献   

20.
Eu2+,Dy3+ and Zr4+ ions co-doped strontium aluminate(i.e.,SrAl2O4:Eu2+,Dy3+,Zr4+)/molybdate(i.e.,Ho2MoO6 or Nd2MoO6) with photo-/mechano-luminescence and allochroic effect as multi-optical functional hybrid pigments were prepared via solid state reactions and subsequent mixing.The phosphor and hybrid pigments were characterized by X-ray diffraction,scanning electron...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号