首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 115 毫秒
1.
钒钛磁铁矿是重要的炼钢原料,其中的钒、钛元素具有极高的综合利用价值。钒、钛元素的测定方法多样,其中化学湿法手段繁琐,而先采用微波消解法处理样品,再使用电感耦合等离子体原子发射光谱法(ICP-AES)测定需附加溶样设备,成本较高。样品采用硼酸-碳酸钠混合熔剂在1 000 ℃熔融、盐酸浸出的方法溶解样品,选择V 309.311 nm、Ti 334.941 nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定钒钛磁铁矿中钒和钛。钒和钛的校准曲线线性相关系数均大于0.999,方法检出限均为0.000 5%。按照实验方法测定钒钛磁铁矿国家标准样品GBW07225、GBW07226a、GBW07227中钒、钛,结果的相对标准偏差(RSD,n=7)小于4%,测定值与认定值相一致。选择3个钒钛磁铁矿实际样品,分别按照实验方法和国家标准方法GB/T 6730.31—2017(分光光度法测定钒)及GB/T 6730.23—2006(滴定法测定钛)测定钒和钛,结果相一致。  相似文献   

2.
中低合金钢中的铌、钨、锆、钴、钒可以改善钢的性能,提高钢的强度、耐腐蚀性、焊接性能等,而锡则是钢中的有害元素,因此对钢中这些元素的测定十分必要。本文利用微波消解法消解中低合金钢样品,由于溶样的温度和压力提高,样品在硫酸和氢氟酸介质中能够快速和完全地溶解。试样溶解后加入草酸络合铌,硼酸络合过量的氢氟酸,并在配制校准曲线系列溶液时加入与被测试液相同量铁、溶解酸,使校准曲线系列溶液和被测试液中的基体、酸度基本一致以消除基体带来的干扰,然后用电感耦合等离子体原子发射光谱法 (ICP-AES)测定了试液中铌、钨、锆、钴、钒、锡含量。用本法测定了中低合金钢标样中铌钨锆钴钒锡,测定值与认定值吻合,测定结果的相对标准偏差在0.03%~1.2%。  相似文献   

3.
采用硝酸、氢氟酸和高氯酸冒烟溶解样品,选取Nb 322.548nm、V 310.230nm和Zr 319.418nm为分析谱线,采用基体匹配法配制标准溶液系列并绘制校准曲线消除基体效应的影响;使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铌、钒和锆,从而建立低碳低钛硅铁中铌、钒和锆的测定方法。共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰影响。各待测元素校准曲线的线性相关系数均大于0.9995;各元素的检出限分别为0.0006%,0.0005%和0.0005%。实验方法应用于低碳低钛硅实际样品中铌、钒、锆的测定,结果的相对标准偏差(RSD,n=10)为1.2%~4.7%,回收率为98%~104%。按实验方法测定低碳低钛硅铁样品中铌、钒、锆,测定结果与YB/T 4395—2014、GB/T 223.14—2000和GB/T 223.30—1994测定值相符。  相似文献   

4.
杨新能  陈德  李小青 《冶金分析》2019,39(12):55-60
准确快速测定铁矿石中微量元素,对提高钢及钒产品质量具有十分重要的意义,但针对铬、铌、钼、钨、锡等难以被酸溶解的元素,选择适宜的样品前处理方法并采用电感耦合等离子体原子发射光谱法(ICP-AES)测定,有利于提高准确度和测试效率。试验采用碳酸锂-硼酸混合熔剂高温熔融样品,再经盐酸浸取、酸化;选择Cr 267.716nm、Nb 269.706nm、Mo 202.030nm、W 224.875nm、Sn 189.989nm为分析谱线,基体匹配法绘制校准曲线消除基体效应的影响,采用电感耦合等离子体原子发射光谱法测定铁矿石中铬、铌、钼、钨、锡。各待测元素校准曲线的线性相关系数均不小于0.9996;方法检出限为0.002%~0.003%。方法应用于铁矿石实际样品中铬、铌、钼、钨、锡的测定, 结果的相对标准偏差(RSD,n=9)为1.0%~3.8%;回收率为94%~105%。按照实验方法测定4个铁矿石样品中铬、铌、钼、钨、锡,结果与其他化学分析方法(其中铬、铌、锡采用光度法,钨、钼采用电感耦合等离子体质谱法)测定值一致。  相似文献   

5.
杨新能  陈德  李小青 《冶金分析》1982,39(12):55-60
准确快速测定铁矿石中微量元素,对提高钢及钒产品质量具有十分重要的意义,但针对铬、铌、钼、钨、锡等难以被酸溶解的元素,选择适宜的样品前处理方法并采用电感耦合等离子体原子发射光谱法(ICP-AES)测定,有利于提高准确度和测试效率。试验采用碳酸锂-硼酸混合熔剂高温熔融样品,再经盐酸浸取、酸化;选择Cr 267.716nm、Nb 269.706nm、Mo 202.030nm、W 224.875nm、Sn 189.989nm为分析谱线,基体匹配法绘制校准曲线消除基体效应的影响,采用电感耦合等离子体原子发射光谱法测定铁矿石中铬、铌、钼、钨、锡。各待测元素校准曲线的线性相关系数均不小于0.9996;方法检出限为0.002%~0.003%。方法应用于铁矿石实际样品中铬、铌、钼、钨、锡的测定, 结果的相对标准偏差(RSD,n=9)为1.0%~3.8%;回收率为94%~105%。按照实验方法测定4个铁矿石样品中铬、铌、钼、钨、锡,结果与其他化学分析方法(其中铬、铌、锡采用光度法,钨、钼采用电感耦合等离子体质谱法)测定值一致。  相似文献   

6.
建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定钒钛磁铁矿中钒的方法,并确定了仪器分析的最佳条件,对测定介质、干扰等进行了系统研究。结果标明:在小于5%HNO_3介质中,所用酸不影响测定;矿中常见铁离子的干扰,通过用盐酸进行预溶解去除,残留的基体元素对测定没有影响。采用上述条件测定了国家标准物质中的钒,结果令人满意。  相似文献   

7.
在采用氯代磺酚C分光光度法测定钒钛磁铁矿中铌时,存在试样较难分解的问题,同时试样中的钛易水解干扰显色,钒也会与氯代磺酚C发生络合反应从而干扰测定。实验采用盐酸-氢氟酸-硫酸(1+1)溶解试样,通过加入酒石酸作为掩蔽剂消除了钛和钒的干扰,实现了氯代磺酚C分光光度法对钒钛磁铁矿中铌的测定。实验表明,在0.5~3.0mol/L盐酸介质中,铌的质量浓度在0.050~0.500μg/mL范围内与其对应的吸光度符合比尔定律,相关系数为0.9999。方法的检出限为 0.002%(质量分数),测定下限为 0.005%(质量分数)。干扰试验表明,试样中共存元素对铌测定的干扰可忽略。采用实验方法测定3个钒钛磁铁矿试样中铌,结果的相对标准偏差(RSD,n=6)小于1.0%。按照实验方法测定6个钒钛磁铁矿样品,结果与电感耦合等离子体原子发射光谱法(ICP-AES)相吻合。  相似文献   

8.
钛合金中铝、硅、铁、钒、钼、铌、锆的含量会对其热学和力学性能产生影响,因此需要对7种元素含量进行准确测定。实验采用盐酸-氢氟酸-硝酸酸溶体系溶解试样,分别选择Al 308.215 nm、Si 251.611 nm、Fe 259.940 nm、V 311.071 nm、Mo 202.030 nm、Nb 309.418 nm、Zr 339.198 nm作为铝、硅、铁、钒、钼、铌、锆的分析谱线,用基体匹配法消除了基体效应的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定钛合金中铝、硅、铁、钒、钼、铌、锆的分析方法。干扰试验结果表明,样品中共存元素对测定无影响。校准曲线的线性相关系数均大于0.999 1;方法检出限为0.000 5%~0.002 6%。溶液中各元素在24 h内测定结果稳定。按照实验方法测定钛合金中铝、硅、铁、钒、钼、铌、锆,结果的相对标准偏差(RSD,n=11)为0.86%~3.9%;钛合金标准物质/样品中铝、硅、铁、钒、钼、铌、锆测定结果与认定值/标准值的相对误差均不大于3.8%。  相似文献   

9.
张艳  沈健 《冶金分析》2023,(2):73-79
镍基合金Inconel 625是耐蚀性能优异的合金,铬、钼、铌作为其主要成分,关系到产品性能,所以准确分析铬、钼、铌含量对产品的质量控制具有重要意义。采用盐酸、硝酸和氢氟酸经微波消解分解样品,溶液经稀释后,选择Cr 267.716 nm、Mo 204.598 nm、Nb 210.942 nm为分析谱线,Y 371.029 nm为内标谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)对镍基合金Inconel 625中铬、钼、铌进行测定。结果表明,样品中共存元素对待测元素的干扰可忽略。各待测元素的校准曲线线性相关系数均大于0.999 9。实验方法应用于镍基合金Inconel 625实际样品中铬、钼、铌的测定,测定结果的相对标准偏差(RSD,n=11)为0.23%~0.54%。按照方法测定镍基合金标准样品中铬、钼、铌,测定结果与标准值相吻合。  相似文献   

10.
ICP-AES法测定钒钛磁铁矿中钒、钛元素的研究   总被引:7,自引:0,他引:7  
通过实验研究了电感耦合等离子体原子发射光谱法(ICP-AES法)测定钒钛磁铁矿中元素钒、钛的分析测试条件。采用密闭式高压消解罐溶解试样,选用元素最佳分析谱线和仪器合适的工作条件进行测定,共存元素之间的干扰很小,测定值相对标准偏差小于2%,加标回收率在95%~105%之间,分析方法快速、简便,分析结果准确。  相似文献   

11.
研究了电感耦合等离子体原子发射光谱法(ICP-AES)同时测定钒钛磁铁矿中MnO、P、Cu、V2O5、TiO2、CaO、MgO的条件并建立了测定方法。采用HCl、HNO3、HF、HClO4溶解钒钛磁铁矿试样,通过采用基体匹配法消除基体效应,选择合适的光谱线作为分析线并采用谱线背景扣除法消除谱线干扰。实验结果表明钒钛磁铁矿中的MnO、P、Cu 、V2O5、TiO2、CaO、MgO在一定浓度范围内与强度具有良好的线性关系,相关系数在0.999以上。将本方法用于测定标准样品GBW07226,测得结果与认定值相符,相对标准偏差(RSD)为0.56%(Cu)~10.6%(P),加标回收率在95%~107%之间。  相似文献   

12.
成勇 《冶金分析》2015,35(3):56-60
采用高压密闭微波加热方式,以硝酸和盐酸混合酸(VHNO3:VHCL=1:2)消解样品,建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定五氧化二钒中质量分数为0.003%~0.100%的硼和铋的分析方法。实验表明:钒基体对硼、铋不产生光谱重叠干扰,但是,高浓度钒的基体效应降低了硼、铋谱线的检测信号强度;钒基体的连续背景叠加导致了硼、铋谱线的背景基线信号强度增强;硼、铋的部分灵敏谱线受到铬、铁等共存杂质元素的谱线重叠干扰。方法采取钒基体匹配和同步背景校正相结合的措施消除了基体效应的影响,通过采用灵敏度高且未受共存组分影响的谱线作为分析谱线和选择合适的检测积分与背景校正区域,提高了痕量硼、铋的检测性能。硼和铋的测定下限分别为0.001 1%和0.002 3%(二者均为质量分数),背景等效浓度分别为0.000 4%和0.001 8%(二者均为质量分数)。样品分析结果的相对标准偏差(RSD,n=8)小于8.0%,加标回收率在93%~110%之间,实际样品测定结果与电感耦合等离子质谱法(ICP-MS)一致。  相似文献   

13.
锰铁样品经微波消解后,选择327.395、231.604、177.434、334.941、309.310 nm波长的光谱线分别作为铜、镍、磷、钛、钒的分析线,用电感耦合等离子体发射光谱法测定了锰铁样品中铜、镍、磷、钛、钒含量。基体锰产生的基体效应可以通过基体匹配的方法消除,基体铁对测定没有影响。方法用于测定锰铁标样,测定值与认定值一致;用于测定锰铁试样,测定结果的相对标准偏差在0.2%~3.6%之间,加标回收率为97%~103%。方法可以用于中、高、低碳锰铁中铜、镍、磷、钛、钒的测定。  相似文献   

14.
采用硝酸和硫酸处理样品后, 在5%(体积分数)硫酸介质中, 用电感耦合等离子体原子发射光谱法(ICP-AES)测定了钕铁硼中钼、钨、铌、锆、钛的含量。基体元素铁、钕和硫酸产生的光谱干扰或基体效应采用基体匹配的方法克服, 基体元素硼和其他共存元素对测定均没有干扰。方法的测定下限分别为0.10 μg/mL(钼)、0.20 μg/mL(钨)、0.15 μg/mL(铌)、0.10 μg/mL(锆)、0.10 μg/mL(钛)。方法应用于钕铁硼样品中钼、钨、铌、锆、钛的测定, 测定结果与电感耦合等离子体质谱法的测定结果或参考值相符, 加标回收率在98%~104%之间, 相对标准偏差(RSD, n=11)小于6%。  相似文献   

15.
采用高压密闭消解系统,以6 mL HNO3-1 mL HF-3 mLHCl酸体系消解锰矿石,建立了电感耦合等离子体质谱法(ICP-MS)测定锰矿石中钛、钒、锶3种金属元素的方法。选择48Ti、51V和88Sr为待测同位素,以钪(45Sc)和铟(115In)为内标校正了基体效应与信号漂移。钛、钒和锶校准曲线的线性相关系数均为0.999 9,检出限分别为0.12、0.003 0和0.014 ng/mL。将方法用于锰矿石实际样品分析,结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,相对标准偏差(RSD, n=11)不大于2.0%,加标回收率在99%~102%之间。  相似文献   

16.
与一般在试液中加入可疑干扰元素的离子标准溶液来考察干扰元素和干扰程度的方法不同,本文用含不同铌且基体及组分元素差异较大的化学标准物质配制标准溶液,并根据用其测定铌时各相关分析线的校正曲线成线性情况,考察测定铌的光谱干扰程度。实验结果表明:标准溶液中钒、钛和铬对测铌的不同分析线存在干扰,尤以钒、钛分别对Nb309.418 nm和Nb313.079 nm干扰为甚,严重影响测量结果的准确度。采用干扰系数法校正光谱干扰以后,各分析线的校正曲线线性相关性大大提高,从而提高了测量结果的准确度。校正了钛对Nb313.079 nm的光谱干扰后,测得的GH4169化学标钢中的铌量为5.21%±0.060%与标钢赋值5.22%相一致。同时通过对校正后铌的各分析校准曲线线性的分析研究,找到了Cr18Ni20Mo2Cu2Nb不锈钢中铌测定值偏低的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号