首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
RAFM钢应变补偿本构关系及热加工图   总被引:1,自引:0,他引:1  
邱国兴  白冲  蔡明冲  王建立  李小明  曹磊 《钢铁》2022,57(11):157-166
 低活化铁素体/马氏体(RAFM)钢具有较低的辐照肿胀率和优异的力学性能,被认为是聚变堆首选的结构材料。然而,低活化钢强度高、冷塑性变形抗力大的特点,使其难以通过冷加工或低温加工实现大规模生产。使用MMS-200型热模拟试验机,在变形温度为950~1 200 ℃、应变速率为0.1~5 s-1和最大变形量为50%条件下,进行了低活化铁素体/马氏体钢(0.11C-9.4Cr-1.35W-0.22V-0.05Si-0.11Ta-0.50Mn)单道次热压缩试验,研究其热变形行为。基于动态材料模型构建了不同应变量下的低活化钢变形本构方程和热加工图,确定了最优热加工参数,结合金相结果分析了材料变形过程中微观组织演化规律,为低活化钢的热加工成形工艺及组织优化提供理论参考。结果表明,在相同应变速率下,随着变形温度升高,流变应力逐渐降低,在一定变形温度下,流变应力随应变速率增大而增大;温度和应变速率对组织的影响主要取决于变形过程中材料内部发生的动态回复和再结晶等机制的交互作用。使用六阶多项式拟合进行应变补偿建立的低活化钢变形本构方程具有较高的预测精度,平方相关系数为0.972。显微组织和热加工图分析结果表明,温度升高为再结晶提供了充足能量,材料软化机制由动态回复转变为动态再结晶;减小应变速率,能量有足够时间扩散,有利于动态再结晶的进行;在变形温度为1 060~1 130 ℃、应变速率为0.13~0.36 s-1条件下和合金耗散系数η达到36%的最佳热加工参数范围,可获取到均匀动态再结晶组织。  相似文献   

2.
采用Gleeble-1500热/力模拟试验机进行压缩试验,研究了不同变形条件下微量稀土对T91耐热钢动态再结晶行为的影响.分析绘制了稀土加入前后实验钢的真应力-真应变曲线、再结晶-温度-时间图、再结晶图及功率耗散图,并计算了高温下实验钢的再结晶激活能.在变形温度为850~1100℃,变形速率为0.004~10 s-1变形条件下,变形温度越高和变形速率越低,动态再结晶越容易发生.稀土加入会产生固溶强化,稀土元素与碳原子发生交互作用,且在晶界处或晶界附近偏聚,使变形抗力与峰值应变均增大,再结晶激活能由354.6 kJ·mol-1提高到397.2 kJ·mol-1.另外,稀土会显著推迟再结晶发生时间,扩大再结晶的时间间隔,推迟再结晶动力学过程.   相似文献   

3.
利用变形温度为1120~1210℃、应变速率为0.1~20 s-1以及变形量为15%~60%的等温热压缩实验研究了GH4700合金的热变形行为.通过对低温和高应变速率条件下的形变热效应进行修正,得到准确的流变曲线,推导出描述峰值应力与温度和应变速率等变形参数的本构方程,并得到GH4700合金热变形表观激活能为322 kJ.组织分析表明,动态再结晶是热变形过程中最主要的软化方式,再结晶形核方式为应变诱发晶界迁移,变形温度升高和应变速率增大均有利于再结晶形核.再结晶发展阶段,随着变形量的增大和变形温度的升高,动态再结晶比例增加,在应变速率-温度坐标中,再结晶比例等值线呈反"C"形式.采用分段函数描述了不同应变速率下GH4700合金动态再结晶晶粒尺寸与变形参数的关系.   相似文献   

4.
采用Gleeble-3500热模拟实验机对Cu-Cr-Zr合金进行了压缩变形实验,分析了在变形温度为25~700℃、应变速率为0.0001~0.1000s-1的条件下流变应力的变化规律,利用扫描电镜及透射电镜分析合金在热压缩过程中的组织演变及动态再结晶机制。结果表明:Cu-Cr-Zr合金在热变形过程中发生了动态再结晶,且变形温度和应变速率均对流变应力有显著的影响,流变应力随着变形温度的升高而降低,随着应变速率的增加而升高,说明该合金属于正应变速率敏感材料;当变形温度为400~500℃时,低应变速率(0.0001~0.0010 s-1)的真应力-真应变曲线呈现动态再结晶曲线特征,高应变速率(0.01~0.10 s-1)的真应力-真应变曲线呈现动态回复特征;在真应力-真应变曲线的基础上,采用双曲正弦模型能较好地描述Cu-Cr-Zr合金高温变形时的流变行为,建立了完整描述合金热变形过程中流变应力与应变速率和变形温度关系的本构方程,确定了合金的变形激活能为311.43 kJ·mol-1。  相似文献   

5.
采用Gleeble-1500D对2.25Cr1Mo钢在温度950~1200℃,应变速率为0.01~10s-1,变形量为60%下进行热压缩试验,探究不同变形温度、不同应变速率对2.25Cr1Mo钢动态再结晶行为的影响,并建立动态再结晶临界应变及动态再结晶分数模型。结果表明,2.25Cr1Mo钢在高温大应变速率下更容易发生动态再结晶,得到了2.25Cr1Mo钢在发生动态再结晶时的变形激活能、临界变形量以及动态再结晶分数模型,构建了2.25Cr1Mo钢本构方程,并建立了满足有限元软件数据接口的动态再结晶物理冶金模型,为大锻件锻造成型微观模拟提供基础条件。  相似文献   

6.
本课题对P91管坯试样的低倍、夹杂、显微组织、热压缩变形行为以及常温力学性能进行了分析研究。结果表明:采用"电炉+炉外精炼+真空脱气冶炼"工艺,可制备钢质纯净、夹杂物级别较低的P91管坯;P91具有良好的淬透性,在空冷条件下,即可获得马氏体组织;P91经高温正火和回火热处理后,组织为晶粒细小的亚晶化回火马氏体组织;在同一应变速率条件下,变形抗力对变形温度比较敏感,采用较高的变形温度,可降低锻造过程中的变形抗力,当变形温度达到1 150℃以上时,随着变形程度的增大会发生奥氏体组织的动态再结晶,从而进一步细化晶粒;P91管坯试样的常温力学性能可满足GB5310以及ASME SA335标准要求。  相似文献   

7.
《特殊钢》2017,(2)
试验用UNS N06625合金(/%:0.027C,0.005S,0.005P,0.27Si,0.07Mn,21.68Cr,62.93Ni,9.00Mo,3.98Nb,0.20Ti,1.22Fe,0.143A1)由3 t中频感应炉熔炼,3 t电渣炉重熔后锻造成材。采用Gleeble1500D热模拟实验机对UNS N06625合金进行了950~1180℃变形速率5 s~(-1)的拉伸以及变形速率1,5,10 s~(-1)真应变0.9的压缩实验,得到了该合金的变形抗力、断面收缩率和真应力应变曲线。通过分析变形抗力和断面收缩率,确定了UNS N06625合金的热加工温度区间为975~1180℃;研究了变形温度和变形速率对该合金动态再结晶的影响;通过拟合计算应力应变数据,建立了UNS N06625合金的峰值应力模型和动态再结晶临界变形量模型。5 t电渣锭的生产实践表明,该合金合适的开坯加热温度为1120℃。  相似文献   

8.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,在变形温度650~850℃、应变速率0.001~10 s~(-1)和总压缩应变量50%的条件下,对Cu-Cr-Zr合金的流变应力行为进行研究.通过应力-应变曲线和显微组织图分析了合金在不同应变速率、不同应变温度下的变化规律.结果表明:应变速率和变形温度对合金再结晶影响较大,变形温度越高,合金越容易发生动态再结晶;应变速率越小,合金也同样容易发生动态再结晶,并且对应的峰值应力也越小.从流变应力、应变速率和温度的相关性,得出了该合金热压缩变形时的热变形激活能Q和流变应力方程.研究分析Cu-Cr-Zr合金的热加工性能,可为生产实践提供理论指导与借鉴.  相似文献   

9.
利用 Gleeble-3500型热模拟机,研究700MPa 管线钢(/%:0.07C,0.90Si,0.60Mn,0.008P,0.002S, 0.30Ni,0.10Cr,0.12Mo,0.06V,0.03Nb,0.28Cu,0.04Alt,0.0060N) 20mm热轧板在850~1250℃ 和应变速率0.01~1s-1下单道次热压缩变形及组织演变,得出单道次压缩变形真应力-真应变曲线,热压缩再结晶动态图和动态再结晶开始时间与变形温度关系(RTT)曲线。研究结果表明,发生再结晶由变形温度和应变速率共同决定,该700MPa管线钢在温度1100~1250℃和应变速率0.01~1s-1下压缩变形时容易发生再结晶。再结晶发生机制是热压缩应变,使得原始晶粒破碎、新晶界产生迁移促使新晶核生成。  相似文献   

10.
采用了MMS-200热力模拟机以40CrMnMo钢为实验对象进行了热压缩试验,研究了变形温度850℃~1150℃,变形量0.8,应变速率在0.01~10s~(-1)条件下实验钢的热变形行为。通过分析高温下变形参数对流变应力和奥氏体晶粒尺寸的影响,建立40CrMnMo钢的稳态动态再结晶晶粒尺寸模型。结果表明:变形温度为850℃~1150℃,实验钢在应变速率0.01~0.1s~(-1)下发生连续动态再结晶,应变速率1~10s~(-1)下发生动态回复。通过引入Zener-Hollomon(Z)参数表征变形参数对稳态动态再结晶晶粒尺寸的影响,建立了稳态再结晶晶粒尺寸的数学模型,得出提高应变速率或变形温度较低能使Z参数增大,峰值应力升高且动态再结晶晶粒减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号