首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During earthquakes multisimple-span bridges are vulnerable to span separation at their expansion joints. A common way of preventing unseating of spans is to have cable or rod restrainers that provide connections between adjacent spans. Alternatively, dislocation of the girders can be controlled with a link slab that is the continuous portion of the bridge deck between simple spans. Seismic retrofit with link slab should be more cost-effective than the existing methods when it is performed during redecking or removal of expansion joints. Maintenance cost associated with expansion joints could also be reduced. This paper discusses the use of link slabs for retrofit of seismically deficient multisimple-span bridges with precast, prestressed concrete girders. The concept is equally applicable to bridges with steel girders. Analytical studies for typical overpasses were performed to investigate the effectiveness of the proposed link slab application. A simple preliminary design procedure was also developed.  相似文献   

2.
In the U.S. bridge design practice, an approach slab is commonly provided to facilitate a smooth transition from the highway pavement to the bridge deck. Maintenance of bridge approaches often necessitates the repair or replacement of approach slabs owing to damage from heavy traffic loads, washout of fill materials, and settlement of the approach embankment. Approach slab damage because of embankment settlement is considered a more common problem and has been extensively investigated in the literature. In this paper, performance of the approach slab degraded by void formation underneath the slab is examined by load testing. Full-size approach-slab specimens were tested under increasing magnitude up to four times AASHTO HS20-44 design truck loads. The test matrix included four slab specimens with the following details: (1)?conventional steel reinforcement representative of current California design; (2)?steel reinforcement replaced by a double-layer pultruded fiber-reinforced polymer grating; (3)?steel reinforcement replaced by glass fiber-reinforced polymer rebars; and (4)?incorporation of steel and polyvinyl alcohol fibers in the concrete mix and removal of top longitudinal and transverse steel. Results indicated that the slabs show satisfactory performance under standard HS20-44 design truck load. Tests also revealed that these slabs exhibited similar performance in terms of stiffness, deformation, and crack pattern when fully supported, but registered noticeable difference in performance under deteriorating soil washout conditions. The fiber-reinforced concrete slab in general showed the best crack control and the smallest deflection and end rotation among the four slabs.  相似文献   

3.
Soil embankment settlement causes concrete approach slabs of bridges to lose their contact and support from the soil. When soil settlement occurs, the slab will bend in a concave manner that causes a sudden change in slope grade near its ends. Meanwhile, loads on the slab will also redistribute to the ends of the slab, which may result in faulting across the roadway at the ends of the approach slab. Eventually, the rideability of the bridge approach slab will deteriorate. The current American Association of State Highway Transportation Officials code specifications do not provide clear guidelines to design approach slabs considering the embankment settlements. State Departments of Transportation are spending millions of dollars each year to deal with problems near the ends of approach slabs. To investigate the effect of embankment settlements on the performance of the approach slab, a three-dimensional finite element analysis was conducted in the present study, considering the interaction between the approach slab and the embankment soil, and consequently the separation of the slab and soil. The predicted internal moments of the approach slab provide design engineers with a scientific basis to properly design the approach slab considering different levels of embankment settlements. A proper design of the approach slab will help mitigate the rideability problems of the slab.  相似文献   

4.
The State Street Bridge, in Salt Lake City, was designed and built in 1965 according to the 1961 AASHO specifications; the design did not include earthquake-induced forces or displacements since only wind loads were considered. The bridge consists of four reinforced concrete (RC) bents supporting composite welded steel girders; the bents are supported on cast-in-place concrete piles and pile caps. A vulnerability analysis of the bridge was conducted that determined deficiencies in (1) confinement of column lap splice regions, (2) anchorage of longitudinal column bars in the bent cap, (3) confinement of column plastic hinge zones, and (4) shear capacity of columns and bent cap–column joints. Seismic retrofit designs using carbon-fiber-reinforced-polymer (CFRP) composites and steel jackets were performed and compared for three design spectra, including the 10% probability of exceedance in 250 years earthquake. The CFRP composite design was selected for implementation and application of the composite was carried out in the summer of 2000 and 2001, while the bridge was in service. The paper describes the CFRP composite design, which, in addition to column jackets, implemented an “ankle wrap” for improving joint shear strength and a “U-strap” for improving anchorage of column bars in the bent cap; other retrofit measures were implemented, such as bumper brackets and a deck slab retrofit. A capacity versus demand evaluation of the as-built and retrofitted bents is presented.  相似文献   

5.
This paper reports on a new bridge deck slab flange-to-flange connection system for precast deck bulb tee (DBT) girders. In prefabricated bridge system made of DBT girders, the concrete deck slab is cast with the prestressed girder in a controlled environment at the fabrication facility and then shipped to the bridge site. This system requires that the individual prefabricated girders be connected through their flanges to make it continuous for live load distribution. The objectives of this study are to develop an intermittent bolted connection for DBT bridge girders and to provide experimental data on the ultimate strength of the connection system. This includes identifying the crack formation and propagation, failure mode, and ultimate load carrying capacity. In this study, three different types of intermittent bolted connection were developed. Four actual-size bridge panels were fabricated and then tested to collapse. The effects of the size and the level of the fixity of the connecting steel plates, as well as the location of the wheel load were examined. The developed joint was considered successful if the experimental wheel load satisfied the requirements specified in North American bridge codes. It was concluded that location of the wheel load at the deck slab joint affected the ultimate load carrying capacity of the connections developed. Failure of the joint was observed to be due to either excessive deformation and yielding of the connecting steel plates or debonding of the embedded studs in concrete.  相似文献   

6.
The lack of safety of deck slabs in bridges generally causes frequent repair and strengthening. The repair induces great loss of economy, not only due to direct cost by repair, but also due to stopping the public use of such structures during repair. The major reason for this frequent repair is mainly due to the lack of a realistic and accurate assessment system for bridge decks. The purpose of the present paper is therefore to develop a realistic assessment system which can estimate reasonably the safety, as well as the service life of concrete bridge decks, based on the deterioration models that are derived from both the traffic loads and environmental effect. A deterioration model due to chloride ingress is first established. The damage models due to repetitive traffic loads considering the dry and wet conditions of deck slabs are proposed. These models are used to calculate the remaining life of a bridge deck slab. A prediction method for service life of deck slab due to loading and environmental effects is developed based on material, as well as structural evaluation. The proposed method includes the assessment of corrosion in material level, and the analyses of flexure, shear, and fatigue in structural level. Finally, an assessment system for prediction of safety and remaining service life is developed based on the theories established in this study. The developed assessment system will allow the correct diagnosis of damage state and the realistic prediction of service life of concrete decks in girder bridges.  相似文献   

7.
This paper presents the negative bending of reinforced concrete slabs strengthened with near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) strips. Six slab specimens, three of which are strengthened with CFRP strips, are tested in static and fatigue loads. A wheel-running fatigue test machine is used to simulate vehicular loads on a bridge deck. The effectiveness of CFRP strengthening for bridge decks in cantilever and pseudonegative bending is examined based on moment-carrying capacity and cyclic behavior under the wheel-running fatigue loads, including crack patterns and damage accumulation. The moment-carrying capacity (static) of the cantilever slab strengthened with the NSM CFRP strips is improved by 68.4% when compared to that of an unstrengthened slab. The damage accumulation rate of the strengthened cantilever slab owing to the fatigue load is significantly lower than that of the unstrengthened slab. The damage accumulation of the strengthened slab gradually increases and is irreversible when the fatigue cycles increase. The fatigue-induced flexural cracks of the slabs develop along the wheel-running direction. A simple predictive model is presented to estimate the fatigue life of the test slabs.  相似文献   

8.
Orthotropic plates are widely used in bridge deck systems. However, these are not commonly treated as such within design specifications, and semianalytical solutions are not presently available for all deck types. This paper develops deflection equations for infinitely wide and simply supported thin plates considering each of the three cases of orthotropy: (1)?relatively torsionally stiff, flexurally soft; (2)?uniformly thick plate; and (3)?torsionally soft, flexurally stiff; subjected to arbitrary patch loading. These are common boundary and loading conditions encountered for bridge deck applications. The reported analytical solutions enable rapid evaluation of multiple moving patch loads to determine maximum design load effects and permit validation of numerical and finite-element methods. Application of the solutions will produce guidelines that can prescribe design demands and establish practical design simplifications for treatment of different bridge deck and slab systems in a uniform and consistent manner.  相似文献   

9.
A large number of pile-supported bridge approach slabs in southeastern Louisiana were examined to identify the factors that affect their long-term performance. Design drawings and subsoil conditions at these sites as well as their traffic and maintenance records were compiled, and seven representative test sites were selected for thorough field investigation that included inspection of the approach slabs, bridge decks, bridge abutments, and roadway pavement. Field evaluation included walking profiler, falling-weight deflectometer (FWD), laser profiler, geodetic survey, soil borings, cone penetrometer, and nondestructive testing. Measurements made with the walking profiler agreed well with the geodetic survey. The FWD and nondestructive testing were effectively used to detect voids under the approach slab. Results of the study indicated that the current empirical methodology used by the Louisiana Department of Transportation and Development for design of pile-supported approach slabs yields inconsistent field performance. It was concluded that this inconsistent performance is primarily due to the differences in roadway embankment design and construction and in subsoil conditions, which in turn affect the negative skin friction (downdrag) loads imparted on the piles. Impact of other variables such as ramp type, speed limit, traffic volume, and so on was found to be insignificant. Results of the field study were used to develop a new rating system for approach slabs (IRIS) based on International Roughness Index (IRI) measurements obtained with the laser profiler.  相似文献   

10.
A number of older bridges were constructed with floor systems consisting of a noncomposite concrete slab over steel girders. A potentially economical means of strengthening these floor systems is to connect the existing concrete slab and steel girders with postinstalled shear connectors to permit the development of composite action. This paper presents the results of an experimental investigation of this concept. Five large-scale noncomposite beams were constructed, and four of these were retrofitted with postinstalled shear connectors and tested under static load. The retrofitted composite beams were designed as partially composite with a 30% shear connection ratio. A noncomposite beam was also tested as a baseline specimen. Test results showed that the strength and stiffness of existing noncomposite bridge girders can be increased significantly. Further, excellent ductility of the strengthened partially composite girders was achieved by placing the postinstalled shear connectors near zero-moment regions to reduce slip demand on the connectors. The test results also showed that current simplified design approaches commonly used for partially composite beams in buildings provide good predictions of the strength and stiffness of partially composite bridge girders strengthened using postinstalled shear connectors.  相似文献   

11.
The flexibility and low damping of the long-span suspended cables in the suspension bridges make them prone to vibrations due to wind and moving loads, which affect the dynamic response of the suspended cables and the bridge deck. This paper shows the design of two control schemes to control the nonlinear vibrations in the suspended cable and the bridge deck due to a vertical load moving on the bridge deck with a constant speed. The first control scheme is an optimal state feedback controller. The second control scheme is a robust state feedback controller, whose design is based on the design of optimal controllers. The proposed controllers, whose design is based on Lyapunov theory, guarantee the asymptotic stability of the system. A vertical cable between the bridge deck and the suspended cable is used to install a hydraulic actuator able to generate the active control force on the bridge deck. The MATLAB software is used to simulate the performance of the system with the designed controllers. The simulation results indicate that the proposed controllers are capable of significantly reducing the nonlinear oscillations of the system. In addition, the performance of the system with the proposed controllers is compared to the performance of the system controlled with a velocity feedback controller. It is found that the system with the proposed controllers can provide better performance than the system with the velocity feedback controller.  相似文献   

12.
In addition to their high strength and light weight, fiber-reinforced polymer (FRP) composite reinforcing bars offer corrosion resistance, making them a promising alternative to traditional steel reinforcing bars in concrete bridge decks. FRP reinforcement has been used in several bridge decks recently constructed in North America. The Morristown Bridge, which is located in Vermont, United States, is a single span steel girder bridge with integral abutments spanning 43.90 m. The deck is a 230 mm thick concrete continuous slab over girders spaced at 2.36 m. The entire concrete deck slab was reinforced with glass FRP (GFRP) bars in two identical layers at the top and the bottom. The bridge is well instrumented at critical locations for internal temperature and strain data collection with fiber-optic sensors. The bridge was tested for service performance using standard truck loads. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very good and promising performance.  相似文献   

13.
在冶金用途的行车中,夹吊板坯的行车通常会使用夹钳开闭器来控制夹钳闭合,从而吊运板坯。在实际使用中放下板坯后的运行过程中,发生了开闭器脱离连接,夹钳上下部分分离,产生的惯性力突然加载在钢丝绳上.继而传导至小车上,使小车弹离轨道,同时夹钳下部可能撞击地面人员及设备的恶性事故。为了减少事故率,提高生产效率,对夹钳开闭器设计进行改进,通过增设止回机构,从而消除事故隐患,避免事故的发生。  相似文献   

14.
Experimental field load-test and finite-element analysis were carried out for the performance assessment of a precast-concrete, modular, three-sided, low-profile, buried, arch bridge system. Finite-element analysis incorporated soil modeling and soil–structure interaction at service and limit load levels. The analytical study simulates step-by-step incremental phases of construction and service loads. The finite-element model was calibrated based on the experimental field assessment, to provide a better correlation between the analytically predicted behavior and the actual response of the structure. The study validates the incorporation of various soil models and soil–structure interaction characteristics, to allow a more cost-effective bridge design.  相似文献   

15.
Main Roads of Western Australia has a continuing program of bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. A 40-year-old, four-span reinforced concrete slab bridge was retrofitted with application of CFRP laminate strips on the top of the deck over the piers, as well as on the deck soffit in the midspan regions, to reduce high moments in both hogging and sagging. The dynamic assessment of the bridge before and after strengthening works provided the opportunity to evaluate the effectiveness of the strengthening intervention through dynamic measurements. A performance evaluation of the repaired structure was carried out through traffic loading application on the updated numerical models of the bridge, before and after retrofit. As a main observation, the addition of CFRP laminate strips led to a significant increase of the structural capacity in flexure. The paper discusses the results obtained from the dynamic-based assessment in terms of effectiveness of the strengthening intervention as well as of efficiency in using such a methodology to evaluate the capacity increase of the retrofitted bridge.  相似文献   

16.
This paper presents the results of a parametric study related to the wheel load distribution in one-span, simply supported, multilane, reinforced concrete slab bridges. The finite-element method was used to investigate the effect of span length, slab width with and without shoulders, and wheel load conditions on typical bridges. A total of 112 highway bridge case studies were analyzed. It was assumed that the bridges were stand-alone structures carrying one-way traffic. The finite-element analysis (FEA) results of one-, two-, three-, and four-lane bridges are presented in combination with four typical span lengths. Bridges were loaded with highway design truck HS20 placed at critical locations in the longitudinal direction of each lane. Two possible transverse truck positions were considered: (1) Centered loading condition where design trucks are assumed to be traveling in the center of each lane; and (2) edge loading condition where the design trucks are placed close to one edge of the slab with the absolute minimum spacing between adjacent trucks. FEA results for bridges subjected to edge loading showed that the AASHTO standard specifications procedure overestimates the bending moment by 30% for one lane and a span length less than 7.5 m (25 ft) but agrees with FEA bending moments for longer spans. The AASHTO bending moment gave results similar to those of the FEA when considering two or more lanes and a span length less than 10.5 m (35 ft). However, as the span length increases, AASHTO underestimates the FEA bending moment by 15 to 30%. It was shown that the presence of shoulders on both sides of the bridge increases the load-carrying capacity of the bridge due to the increase in slab width. An extreme loading scenario was created by introducing a disabled truck near the edge in addition to design trucks in other lanes placed as close as possible to the disabled truck. For this extreme loading condition, AASHTO procedure gave similar results to the FEA longitudinal bending moments for spans up to 7.5 m (25 ft) and underestimated the FEA (20 to 40%) for spans between 9 and 16.5 m (30 and 55 ft), regardless of the number of lanes. The new AASHTO load and resistance factor design (LRFD) bridge design specifications overestimate the bending moments for normal traffic on bridges. However, LRFD procedure gives results similar to those of the FEA edge+truck loading condition. Furthermore, the FEA results showed that edge beams must be considered in multilane slab bridges with a span length ranging between 6 and 16.5 m (20 and 55 ft). This paper will assist bridge engineers in performing realistic designs of simply supported, multilane, reinforced concrete slab bridges as well as evaluating the load-carrying capacity of existing highway bridges.  相似文献   

17.
The method for identifying arbitrary stiffness reduction in damaged reinforced concrete slab bridges under moving loads is proposed and dynamic signals measured at several points are used as response data to reflect the properties of the moving loads sensitivity. In particular, the change in stiffness in each element before and after damage, based on the system identification method, is described and discussed by using a modified bivariate Gaussian distribution function. The proposed method in this work is more feasible than the conventional element-based damage detection method from the computational efficiency because the procedure of finite-element analysis coupled with microgenetic algorithm using six unknown parameters irrespective of the number of elements are considered. The validity of the technique is numerically verified using a set of dynamic data obtained from a simulation of the actual bridge modeled with a three-dimensional solid element. The numerical calculations show that the proposed technique is a feasible and practical method that can prove the exact location of a damaged region as well as inspect the complex distribution of deteriorated stiffness, although there is a modeling error between actual bridge results and numerical model results as well as a measurement error like uncertain noise in the response data.  相似文献   

18.
Continuity diaphragms used in prestressed girder bridges on skewed bents have caused difficulties in detailing and construction. The results of the field verification for the effectiveness of continuity diaphragms for skewed, continuous, and prestressed concrete girder bridges are presented. The current design concept and bridge parameters that were considered include skew angle and the ratio of beam spacing to span (aspect ratio). A prestressed concrete bridge with continuity diaphragms and a skewed angle of 48° was selected for full-scale test by a team of engineers from Louisiana Department of Transportation and Development and the Federal Highway Administration. The live load tests performed with a comprehensive instrumentation plan provided a fundamental understanding of the load transfer mechanism through these diaphragms. The findings indicated that the effects of the continuity diaphragms were negligible and they can be eliminated. The superstructure of the bridge could be designed with link slab. Thus, the bridge deck would provide the continuity over the support, improve the riding quality, enhance the structural redundancy, and reduce the expansion joint installation and maintenance costs.  相似文献   

19.
A recent trend in bridge design has been toward the elimination of joints and bearings in the bridge superstructure. Joints and bearings are expensive in both initial and maintenance costs and can get filled with debris, freeze up, and fail in their task to allow expansion and contraction of the superstructure. They are also a “weak link” that can allow deicing chemicals to seep down and corrode bearings and support components. Because the behavior is unknown and designs are cumbersome, jointless bridges are not widely used despite their enormous benefits. There are no standardized design procedures for these bridges, only a list of specifications and design recommendations are available. The objective of this research on jointless bridges conducted at the Constructed Facilities Center-West Virginia University is to study the behavior of jointless bridges supported on piles and spread footings and subjected to varying load conditions. In addition, time-dependent material properties have also been incorporated in this study. In this paper, the following items are presented: (1) synthesized analytical data that aids in understanding the performance under varying load combinations; (2) effects of primary versus secondary loads, boundary conditions, and system flexibility on induced stresses at various bridge locations; and (3) field testing and monitoring results of a jointless bridge in the state of West Virginia. Based on analytical and experimental results, conclusions are drawn in terms of design alternations.  相似文献   

20.
Repair, strengthening, and retrofit of reinforced and prestressed concrete members have become increasingly important issues as the World’s infrastructure deteriorates with time. Buildings and bridges are often in need of repair or strengthening to accommodate larger live loads as traffic and building occupancies change. In addition, inadequate design and detailing for seismic and other severe natural events has resulted in considerable structural damage and loss of life, particularly in reinforced concrete buildings. Numerous buildings and bridges suffer damage during such events and need to be repaired. The use of carbon fiber reinforced polymer (CFRP) composite fabric bonded to the surface of concrete members is comparatively simple, quick and virtually unnoticeable after installation. The use of composites has become routine for increasing both the flexural and shear capacities of reinforced and prestressed concrete beams. Earthquake retrofit of bridge and building structures has relied increasingly on composite wrapping of columns, beams and joints to provide confinement and increase ductility. This paper presents the results of cyclic testing of three large-scale reinforced concrete slab–column connections. Each of the specimens was a half-scale model of an interior slab–column connection common to flat-slab buildings. The specimens were reinforced according to ACI-318 code requirements and included slab shear reinforcement. While supporting a slab gravity load equivalent to dead load plus 30% of the live load, the specimens were subjected to an increasing cyclic lateral loading protocol up to 5% lateral drift. The specimens were subjected to the same loading protocol after they were repaired with epoxy crack sealers and CFRP sheet on the surfaces of the slab. Repair with epoxy and CFRP on the top surface of the slab was able to restore both initial stiffness and ultimate strength of the original specimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号