首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
对水热法合成的无定形Li-Mn-Me-O前驱体(Me=0、Co或Co-Ti)进行热处理,制备了Co掺杂及Co-Ti复合掺杂的尖晶石型LiMn_2O_4正极材料。通过XRD、SEM对Co-Ti复合掺杂的LiMn_2O_4的结构和微观形貌进行分析与表征,并测试了其电化学性能。研究结果表明:所制备的粉体材料具有良好的立方尖晶石结构,无杂相峰存在;Co-Ti复合掺杂使LiMn_2O_4颗粒变小;其在3.0~4.3 V电压范围内,0.5C倍率条件下,首次放电比容量为116.5 m Ah/g,循环100圈后容量保持率为93.5%;与不掺杂样品相比,其初始容量提高,100次循环的容量保持率提高,且高倍率循环性能也明显得到改善。  相似文献   

2.
用固相反应法合成了Li~+掺杂的LiNi_(0.5)Mn_(1.5)O_4,并用XRD、SEM和恒电流充放电技术研究Li+掺杂对材料结构、形貌和充放电性能的影响。结果表明Li+掺杂和未掺杂LiNi_(0.5)Mn_(1.5)O_4均具有Fd3m尖晶石结构,掺杂的Li~+以固溶体形式存在,掺杂少量的Li+能显著提高材料循环性能,但放电比容量稍有降低,其中Li_(1.05)Ni_(0.45)Mn_(1.5)O_4的放电比容量为136.1 m A·h/g,循环30次后基本不变,具有很好的循环稳定性。  相似文献   

3.
以镍锰二元前驱体和电池级碳酸锂为原料,采用高温固相法合成高电压正极材料LiNi_(0.5)Mn_(1.5)O_4。分别从烧结温度、配锂量和烧结方式的角度研究了合成工艺对材料物化性能与电化学性能的影响。实验结果表明,碳酸锂和镍锰二元前驱体的配比为0.50,经过500℃低温预烧,然后850℃高温烧结的二次烧结下合成的LiNi_(0.5)Mn_(1.5)O_4,0.5 C放电容量133.02 m A·h/g,1.0C放电容量130.67 m A·h/g,结晶度较高,其综合性能最佳。  相似文献   

4.
采用共沉淀和固相烧结工艺制备LiNi0.5Mn1.5O4和LiCr0.1Ni0.45Mn1.45O4正极材料,对其比表面积、振实密度、倍率性能、高低温循环性能等性能指标进行测试,并利用SEM、XRD对所制材料进行形貌观察及物相分析。结果表明:添加微量Cr元素可稳定材料结构,降低比表面积,改善LiNi0.5Mn1.5O4材料电化学性能;LiCr0.1Ni0.45Mn1.45O4正极材料振实密度可达到2.32 g/cm3,比表面积可达到0.51 m2/g,25℃下1.5C充放电,最高容量达到127.2 m A·h/g,300次循环后容量保持率为94.9%;50℃下1.5C充放电,初始容量达到128.5 m A·h/g,200次循环后容量保持率为88.7%。经XRD分析,循环完成后材料尖晶石的结构没有变化。  相似文献   

5.
采用喷雾干燥-高温固相法合成Li Fe1-xMgxPO4-yFy/C(x=0.02;y=0,0.02)正极材料,并进行了物理性质和电化学性能测试。结果表明,掺杂后的样品均为橄榄石结构,粉末颗粒形貌为多孔状球形。Li Fe_(0.98)Mg_(0.02)PO_(3.98)F_(0.02)/C表现出最好的电化学性能,0.1C首次放电比容量和库伦效率分别为158.9m Ah/g和93.5%;1C放电比容量为145m Ah/g,循环50次后容量保持率为98.9%。与LiFePO_4/C和Li Fe_(0.98)Mg_(0.02)PO_4/C相比,Li Fe0.98Mg_(0.02)PO_(3.98)F_(0.02)/C具有更高的比容量、更稳定的循环性能和更好的倍率性能。  相似文献   

6.
采用简单的液相研磨法制备了纳米MoS_2修饰的富锂锰基正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2。恒电流充放电测试结果表明,经过纳米MoS_2修饰的材料表现出优异的电化学循环稳定性能。3%MoS_2修饰的材料在0.5C倍率下经过120次循环后,放电比容量仍高达235mA·h/g,容量保留率为88.4%,相较于空白样153.8mA·h/g的放电比容量和70.1%的容量保留率有显著提高。此外,与空白样的0.70V相比,3%MoS_2修饰的材料经过120次循环后电压衰减仅为0.44V。可见,材料在循环过程中的电压衰减也得到了明显改善。  相似文献   

7.
《稀土》2017,(5)
采用高温固相法制备尖晶石5V正极材料LiNi_(0.5)Mn_(1.5-x)La_xO_4(x=0,0.005,0.01,0.02)。通过XRD,SEM及电化学手段等探讨La~(3+)不同掺杂量对LiNi_(0.5)Mn_(1.5)O_4材料结构和电化学性能的影响。XRD测试结果表明,通过La~(3+)部分取代晶格中Mn~(3+)后使得LiNi_(0.5)Mn_(1.5)O_4材料晶胞体积增大,增加了Li~+迁移速率,进而提高了材料电子电导率,该结论得到了电化学性能测试验证,LiNi_(0.5)Mn_(1.495)La_(0.005)O_4表现出最优秀的循环和倍率性能,经过1C倍率循环275周后,容量保持率为93.8%;20C放电比容量保持率高达65.6%。  相似文献   

8.
采用电解金属锰悬浮液法制备铝掺杂四氧化三锰,并利用上述前躯体合成铝掺杂锰酸锂正极材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电感耦合等离子光谱发射仪(ICP)等手段对样品相组成、微观形貌以及理化指标进行表征,并考察了铝掺杂对合成锰酸锂材料电化学性能的影响。结果表明:对四氧化三锰进行铝掺杂能有效提高最终合成产物的电化学性能,在对四氧化三锰原料进行1%铝含量的掺杂后,以此为原料合成的锰酸锂正极材料0.2 C放电容量达到124.34 m A·h/g,高温55℃下循环100次,容量保持率为90.74%。  相似文献   

9.
掺钴对尖晶石型LiMn_2O_4正极材料性能影响   总被引:1,自引:0,他引:1  
采用固相合成法制备了锂离子电池正极材料用尖晶石型LiMn2O4正极材料,并通过加入Co对材料进行了掺杂改性研究;用X射线衍射(XRD)和扫描电镜(SEM)研究了材料的晶体结构和微观形貌,充放电循环实验对材料的电化学性能进行了测试。结果表明:纯相尖晶石型LiMn2O4初始放电比容量为118.91 mA.h/g,循环25次后放电比容量为107.03mA.h/g,比容量保持率为90.01%;掺杂Co的材料同样具有尖晶石型结构,初始放电比容量略有降低,但循环性能有明显改善,掺Co改性样品Li1.05Co0.04Mn1.96O4的初始放电比容量为114.55mA.h/g,25次充放电循环后,放电比容量为105.76mA.h/g,比容量保持率为92.33%。  相似文献   

10.
以葡萄糖为碳源,对LiH2PO4、MnCO3、FeC2O4与葡萄糖等反应物进行湿法球磨,随后在750℃温度下煅烧,通过固相反应实现对LiMnPO4的铁离子掺杂和碳包覆改性,得到锂离子电池正极材料LiMn1-xFexPO4/C(x=0、0.05、0.10、0.15、0.20)。利用X射线衍射(XRD),扫描电镜(SEM)及电化学测试等手段研究铁离子掺杂量对磷酸锰锂的晶体结构、微观形貌与电性能的影响。结果表明,LiMn0.9Fe0.1PO4/C结晶度良好,颗粒较均匀细小,具有较好的电化学性能,0.05C倍率下的首次放电比容量达到110(mA·h)/g,经过30次循环后,放电比容量约80(mA·h)/g。  相似文献   

11.
以Ni(NO_3)_2·6H_2O和Fe(NO_3)_3·9H_2O为原料,通过水热法制备了尖晶石型NiFe_2O_4前驱体,探讨了热处理温度对NiFe_2O_4材料性能的影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和恒流充放电测试技术对材料晶体结构、形貌特点和电化学性能进行了表征测试。试验结果表明,合成的材料为球形纳米颗粒,400℃下热处理的NiFe_2O_4材料具有最好的循环性能,在100 mA/g的电流密度下,经过20次循环后,比容量保持在588 mAh/g。  相似文献   

12.
以共沉淀法制备的Ni-Mn包覆Co_3O_4前驱体和Li_2CO_3为原料,通过高温固相法制得了具有核壳结构的锂电池正极材料Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2.用扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射(XRD)和充放电测试表征了样品的形貌、晶体结构和电化学性能.结果表明,所制备的核壳结构Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2具有良好的电化学性能,在3.0~4.5 V和3.0~4.6 V,0.2 C下首次放电容量分别达到180.5 m A·h·g~(-1)和201.3 m A·h·g~(-1),在1 C下,循环50周后容量保持率分别为89.3%和63.3%.  相似文献   

13.
采用颗粒纳米化技术与雾化干燥相结合的方法合成了高性能的LiFe_(0.98)Ti_(0.02)PO_(4-x)F_x/C(x=0.00,0.02)正极材料。利用X-ray粉末衍射仪、场发射扫描电子显微镜和蓝电测试系统对合成材料的晶体结构、颗粒形貌和电化学性能进行了表征。结果表明,采用该方法可明显降低一次颗粒粒径,同时引入Ti-F掺杂可进一步提高产品的电化学性能。LiFe_(0.98)Ti_(0.02)PO_(3.98)F_(0.02)/C表现出最好的电化学性能,其0.1C首次放电比容量和库伦效率分别为163.9mAh/g和97.3%;1C放电比容量为144.3mAh/g,循环50次后容量保持率为98.8%,表现出了较高放电比容量和良好的循环性能。  相似文献   

14.
锂离子电池正极材料LiFePO4的制备   总被引:2,自引:0,他引:2  
对制备橄榄石型锂离子电池正极材料LiFePO4进行了实验研究,采用固相合成法合成了LiFePO4和掺杂碳的LiFePO4正极材料。分析测试结果表明:掺杂碳的LiFePO4作为正极材料具有良好的电化学性能,在0.1C倍率下放电,其室温初始放电容量为130mA·h/g,循环10次后几乎没有衰减。  相似文献   

15.
采用共沉淀法制备碳酸盐前驱体,通过高温固相反应制备Na~+掺杂的富锂锰基正极材料Li_(1.2-x)Na_xNi_(0.13)Co_(0.13)Mn_(0.54)O_2(x=0,0.01,0.02,0.04,0.08).X射线衍射(XRD)和扫描电镜(SEM)分析表明,x≤0.04时为层状富锂锰基材料的α-NaFeO_2六方相结构,Na掺杂量过大时颗粒表面出现团聚絮状物并发现第二相—P2型层状氧化物.电化学测试发现适量的Na掺杂可提高材料的比容量、倍率和循环性能;掺杂量为0.02时电化学性能最佳:在2.0~4.6 V充放电, Li_(1.18)Na_(0.02)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2在0.1 C放电比容量为273.4 mAh/g,首次库伦效率为93.1%, 1 C循环100次后容量超过200 mAh/g,保持率为84.3%.离子半径较大的Na~+占据Li位,起到柱撑作用,稳定了结构,增大了层间距,利于Li~+扩散;此外,材料表面形成的P2型层状氧化物能够减缓层状结构向尖晶石结构的转变,从而提高了电化学性能.  相似文献   

16.
以MnCO_3为Mn源,采用热爆工艺合成LiFePO_4,研究不同添加量的MnCO_3对LiFePO_4性能的影响。结果表明,掺杂量x=0.05时LiFe_(0.95)Mn_(0.05)PO_4衍射峰峰强和半高宽为最佳;SEM测试显示,掺杂产物的颗粒分散最好,颗粒均匀;掺杂产物在0.1 C倍率下的首次充放电比容量分别为154.9 mAh/g和138.5 mAh/g,较纯LiFePO_4的首次充放电比容量有较大提高;在经过50次循环后放电比容量保持率为86.45%,在0.2 C、0.5 C和1 C倍率下的首次放电比容量分别为129 mAh/g、109.4 m Ah/g和86.9 mAh/g。  相似文献   

17.
以Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2与碳酸锂为原料,采用高温固相法制备得锂离子电池正极材料LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2。用X射线衍射、扫描电镜以及充放电测试对样品进行表征,研究了烧结温度对材料电化学性能的影响。结果表明,当烧结温度为880℃时,合成的LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2材料物相单一无杂项,具有标准的的ɑ-Na FeO_2晶型。SEM测试表明,产物为球形且球形度较好,颗粒粒度均一,平均粒度均在10μm。880℃烧结的材料在3.0~4.3 V、0.1 C的倍率下放电比容量可达188 m A·h/g,在1.0 C的倍率下循环10次后电池容量保持率为95.46%,表现出较好的电化学性能。  相似文献   

18.
针对磷酸钒锂电导率低的问题,以硝酸锂、偏钒酸铵、磷酸二氢铵为原料,甘氨酸为络合剂和燃料,葡萄糖为碳源,硝酸铝为铝源,采用溶液燃烧合成法制备铝掺杂的Li_3V_2(PO_4)_3/C粉末,以改善其电化学性能。将制备得到的铝掺杂的Li_3V_2(PO_4)_3/C粉末作为锂离子电池正极材组装成电池进行了恒电流充放电测试、循环伏安(CV)和交流阻抗(EIS)等电化学性能测试。结果表明:铝掺杂能有效提高磷酸钒锂电导率,不同的铝掺杂比例的磷酸钒锂具有不同的的电子电导率和锂离子扩散速率,从而具有不同的放电比容量、循环性能和倍率性能;当铝掺杂含量为1%时,磷酸钒锂具有最优的电化学性能,在充放电速度为10C循环500次后放电容量为104.6 mAh/g。  相似文献   

19.
将Hummers法制备的氧化石墨烯(graphene oxide,GO)与纳米硅粉进行超声复合和高温氢还原,制备锂离子电池用纳米硅/石墨烯(Si/G)复合材料。利用扫描电镜、透射电镜、X射线衍射和Raman光谱分析,对Si/G复合材料的形貌与结构进行分析与表征,并测试其电化学性能。结果表明,通过高温氢还原,氧化石墨烯全部还原为石墨烯,无其它杂质相生成。石墨烯包覆在纳米硅颗粒表面,形成层状复合结构;与纯纳米硅粉相比,Si/G复合材料的电化学性能明显提高,在300 m A/g电流密度下,首次放电比容量为2 915.0(m A·h)/g,首次充电比容量为1 080.5(m A·h)/g,20次循环后比容量稳定在969.6(m A·h)/g,库伦效率为99.8%;而纯纳米硅粉的首次放电比容量和首次充电比容量分别为932.7和349.4(m A·h)/g,20次循环后比容量仅为6.4(m A·h)/g。  相似文献   

20.
采用水热法制备了掺杂稀土Ce的LiFe_(1-x)Ce_xPO_4/C(x=0,0.01,0.03,0.05)正极材料,并通过一系列系统的测试对所制备材料进行电化学性能研究。XRD图谱表明,掺杂稀土1%~5%Ce(摩尔分数)未改变LiFePO_4的橄榄石型晶体结构,但扩大了晶胞体积,有利于Li~+的脱嵌。SEM分析结果进一步表明,稀土Ce的掺杂具有细化晶粒的作用,可有效缩短Li~+的扩散和迁移途径。在2.0~4.0V电位范围内,随着稀土Ce掺杂量的增加,0.1C倍率下的LiFe_(1-x)Ce_xPO_4/C初始放电比容量先升高后下降,在x=0.03时达到最高,放电比容量为144.1mA·h/g,比未掺杂Ce的提高17.4%,且其循环50次后容量保持率为95.0%。EIS和CV测试结果表明,LiFe_(1-x)Ce_xPO_4/C(x=0.03)具有最低的电荷迁移电阻,且样品在0.1C倍率下循环50次后氧化还原峰明显,说明样品结构稳定,可逆反应特性良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号