首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着电动汽车的发展,迫切需要具有高安全性、高能量密度、高功率、大容量、长寿命、高环保、低成本等优点的锂离子电池。层状结构的富锂锰基正极材料由于具有比容量高、平台电压高、热稳定性好、价格低廉的特点而被认为是有希望的未来电动汽车候选正极材料之一。尽管其拥有很高的比容量,但仍存在着首次循环不可逆容量高、倍率性能差等问题,纳米化是改进材料倍率性能的一种有效手段。本文以Ni O,Co_3O_4,Mn CO_3和Li_2CO_3为原料,成功制备得到了纳米级的锂离子电池正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电测试对所得样品的结构、形貌及电化学性能进行了表征。结果表明,合成的Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2材料具有层状结构,一次颗粒均匀、细小,平均颗粒尺寸约为90 nm,并具有良好的电化学性能,在2.0~4.8 V以0.1C充放电时,首次放电比容量达到284 m Ah·g~(-1),首次库伦效率为86.1%。材料同时拥有良好的倍率性能,1.0C放电容量达到240 m Ah·g~(-1),3.0C放电容量达到210 m Ah·g~(-1)。  相似文献   

2.
采用简单的液相研磨法制备了纳米MoS_2修饰的富锂锰基正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2。恒电流充放电测试结果表明,经过纳米MoS_2修饰的材料表现出优异的电化学循环稳定性能。3%MoS_2修饰的材料在0.5C倍率下经过120次循环后,放电比容量仍高达235mA·h/g,容量保留率为88.4%,相较于空白样153.8mA·h/g的放电比容量和70.1%的容量保留率有显著提高。此外,与空白样的0.70V相比,3%MoS_2修饰的材料经过120次循环后电压衰减仅为0.44V。可见,材料在循环过程中的电压衰减也得到了明显改善。  相似文献   

3.
通过共沉淀-高温固相法成功制备出粒径为200~300nm的富锂锰基正极材料Li_(1.2)[Ni_(0.13)Co_(0.13)Mn_(0.54)]O_2,并通过湿化学沉积法将富含氧空穴的MnMoO_4沉积在富锂材料表面,用于提高其电化学性能。研究发现,表面修饰的MnMoO_4成功在富锂材料表层诱导产生尖晶石LiMn_2O_4结构,这种特殊的表层异质结构能够有效减少电解液与本体材料发生的副反应,容纳首次充电过程中的氧流失,并提高Li+扩散能力。相比于初始材料,经MnMoO_4修饰后材料的首次库伦效率由79.95%提升到86.54%,循环100次保留的容量由175.8mA·h/g提高到205.7mA·h/g,表现出优异的综合电化学性能。  相似文献   

4.
研究了不同烧结温度及恒温保持时间对富锂锰基正极材料Li_(1+x)[Ni_(0.35)Mn_(0.65)]O_(2+y)形貌、结构及电化学性能的影响。XRD及SEM研究结果表明:所合成的Li_(1+x)[Ni_(0.35)Mn_(0.65)]O_(2+y)正极材料为层状α-NaFeO_2结构,类球形,单颗粒大小均匀。扣式电池测试结果表明:当电流密度为12.5 m A/g,测试电压在2.0~4.8 V时,Li_(1+x)[Ni_(0.35)Mn_(0.65)]O_(2+y)材料最高初始放电比容量为213.3 m A·h/g,首次放电效率为71.0%。扣电进行EIS测试,结果表明材料具有较小的电荷转移阻抗。  相似文献   

5.
采用共沉淀-高温固相法制备了富锂锰基正极材料Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2,并分别采用简单湿化学沉淀法和PVP辅助的湿化学沉淀法对其进行PrPO_4包覆改性。实验结果表明,通过PVP辅助包覆,包覆层更加均匀,材料的电化学性能得到了更为明显的提高。包覆3%-PVP样品首次放电容量高达286.7 mA·h/g,库伦效率89.6%,经过0.1C倍率下循环50圈,放电比容量仍有254mA·h/g,容量保持率由空白样的88.5%提高到95%。由此得出均匀的PrPO_4包覆层能有效提高富锂锰基正极材料的综合电化学性能。  相似文献   

6.
为解决富锂锰基材料首圈效率低,倍率性能差的缺陷,采用静电纺丝法制备了Li_(1.2)[Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2富锂锰基正极材料。实验结果表明,通过静电纺丝法制备的纳米纤维材料具有三维立体结构和更大的比表面积,提高反应活性并降低了锂离子传导阻抗,从而使得材料的倍率性能和放电容量得到了改善。在5 C倍率下,纺丝纤维放电比容量为175 mA·h/g,而沉淀颗粒仅为154 mA·h/g。此外,首圈效率和放电容量也得到了提升,从72.87%提升至81.93%,以上表明静电纺丝法制备的富锂锰基材料具有更优异的性能。  相似文献   

7.
采用碳酸盐共沉淀-高温烧结法制备了La掺杂层状富锂锰基氧化物正极材料Li1.2Mn0.54-xNi0.13Co0.13LaxO2(x=0, 0.01, 0.03, 0.05),考察了La掺杂量对正极材料的结构及电化学性能的影响.采用X射线衍射(XRD)和扫描电镜(SEM)分析研究了正极材料的结构和形貌特征,材料的电化学性能采用交流阻抗和充放电测试仪进行测试分析.研究结果表明:所有样品均保持层状α-NaFeO2结构,随着La掺杂量的增加,样品形貌未发生明显变化,样品放电容量呈现先增大后降低的趋势,当La掺杂量为0.03时,具有最高的放电比容量285.3 mAh/g(0.1 C),经过50次循环后的放电比容量为260.5 mAh/g,容量保持率为91.3 %.   相似文献   

8.
以自制Ni0.4Co0.2Mn0.4(OH)2前驱体和Li_2CO_3为原料,在空气气氛下采用固相烧结工艺制备了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2锂离子电池正极材料。通过SEM和XRD等手段对材料烧结前后形貌与结构进行表征,并测试了烧结后锂离子电池正极材料的电化学性能。结果表明,Ni0.4Co0.2Mn0.4(OH)2前驱体具有良好的片状嵌入结构,且烧结制备的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料混排因子c/a=4.967 3,阳离子混排因子I(003)/I(104)=1.25、I(006+102)/I(101)=0.333、I(018)/I(110)=0.87,表明LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2具有良好的层状结构。在2.5~4.6V、0.2C和0.5C下,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料的首次放电比容量分别为166和154mAh/g,循环80次后容量分别保持为111和100mAh/g,具有良好的电化学性能。  相似文献   

9.
以废旧锂离子电池正极材料为原料,采用燃烧法制备高性能富锂锰基正极材料Li1.2Mn0.54-xNi0.13Co0.13AlxO2,实现了多组元金属离子的高值转化和全量利用,从根本上缩短产品化路径,消减二次污染。SEM和XRD检测表明,所有样品形貌差别不大,基本呈球形,直径约0.5 μm,样品均无杂相峰出现,且都具有六方晶系的ɑ-NaFeO2结构、 空间群,具有良好的层状结构。电化学测试表明,当x=0.03时,所得样品具有最佳的电化学性能,0.5 mA恒电流条件下,首次放电容量为238 mAh/g,200周循环后放电容量保持率为80.3%。  相似文献   

10.
富锂锰基氧化物(LMO)正极材料具有很高的比容量,但其仍存在首次不可逆容量损失大、动力学性能差、电压衰降等缺陷.本文设计并优化Li1.2Ni0.13Co0.13Mn0.54O2正极材料结构,通过掺杂Br-取代O2-限制充放电循环过程晶格氧的迁移;通过调控富锂锰基氧化物电极中的氧空位,增强氧阴离子反应的可逆性,改善电极的...  相似文献   

11.
采用共沉淀法先合成[Ni_(0.83)Co_(0.11)Mn_(0.06)](OH)_2前驱体,在纯氧气氛下经过两段高温烧结生成LiNi_(0.83)Co_(0.11)Mn_(0.06)O_2正极材料。通过在前驱体配锂烧结过程中加入纳米TiO_2实现了Ti~(4+)掺杂,经过掺杂后的Li[Ni_(0.83)Co_(0.11)Mn_(0.06)]_(0.98)Ti_(0.02)O_2正极材料在1C电流密度下的放电比容量高达185.6mAh/g,循环100圈后容量维持在178.8mAh/g,容量保持率高达96.33%。  相似文献   

12.
在表面活性剂、超声振动和机械搅拌的协同作用下,采用共沉淀法制备镍钴锰复合氢氧化物前驱体(Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2),最后将制备得到的纳米片前驱体与碳酸锂(Li_2CO_3)采用高温固相法烧结合成三元层状正极材料(LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2)。对于实验制得的前驱体和正极材料使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电感耦合等离子体发射光谱仪(ICP-OES)以及电池测试仪对前驱体和正极材料进行表征和电化学性能的检测,以探究表面活性剂对正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2和其前驱体的影响。实验结果表明:使用两种表面活性剂油胺(OA)和聚乙烯吡咯烷酮-K30(PVP-K30)所制备出的前驱体为近正六边形的纳米片,纳米片尺寸为400 nm左右。所制备出的正极材料在室温下,2.8~4.5 V,1C充放电条件下,其初始放电容量分别达到151.699和157.093 mAh·g~(-1),经过50次循环后容量保持率分别达到88.22%和99.04%。这样也表明所制备出的正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2具有良好的电化学性能。  相似文献   

13.
在传统碳酸酯电解液中添加氟代碳酸乙烯酯(FEC)可提高电解液的氧化分解电位,从而在高于4. 5 V(vs. Li/Li~+)电压下减少电解液溶剂的分解。用FEC部分或全部取代传统电解液中的碳酸乙烯酯(EC)溶剂,研究4. 7 V (vs. Li/Li~+)高电压下FEC对Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电化学性能的影响。结果表明,FEC的加入提高了Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的首次放电比容量及循环性能,且循环稳定性随FEC量的增加而变高,EC被FEC (33. 33%,质量分数)全部取代EC时电化学性能最佳;循环100周时,FEC为33. 33%的电解液中Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的比容量为200. 5 mAh·g~(-1),容量保持率为85. 72%,而传统电解液中Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2电极的比容量在60周时衰减至115. 0 mAh·g~(-1),容量保持率仅为49. 89%。d Q/d V曲线表明,随FEC取代量的增加,循环过程中产生的电化学极化越小。X射线衍射(XRD)结果表明,在循环过程中,由于FEC的加入缓减了Li_(1. 18)Mn_(0. 52)Co_(0. 15)Ni_(0. 15)O_2结构的变化,且FEC全部取代EC时效果最佳。  相似文献   

14.
以共沉淀法制备的Ni-Mn包覆Co_3O_4前驱体和Li_2CO_3为原料,通过高温固相法制得了具有核壳结构的锂电池正极材料Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2.用扫描电镜(SEM)、X射线能谱仪(EDS)、X射线衍射(XRD)和充放电测试表征了样品的形貌、晶体结构和电化学性能.结果表明,所制备的核壳结构Li(Co_(0.9)Ni_(0.05)Mn_(0.05))O_2具有良好的电化学性能,在3.0~4.5 V和3.0~4.6 V,0.2 C下首次放电容量分别达到180.5 m A·h·g~(-1)和201.3 m A·h·g~(-1),在1 C下,循环50周后容量保持率分别为89.3%和63.3%.  相似文献   

15.
富锂锰材料具有高的比容量和充放电电压平台, 但不可逆容量较大。本文通过对富锂锰正极材料进行W掺杂, 增强了过渡金属与氧的键合作用, 抑制了材料首次充放电过程中晶格氧的脱出, 同时, XRD精修结果表明W掺杂增大了富锂锰层状材料结构的层间距, 促进了锂离子的扩散, 降低了材料的电化学阻抗, 有效改善了材料的循环稳定性和倍率性能。电化学测试发现W掺杂量为3%时性能较优, 在0.2、3、5 C放电比容量分别为211.3、132.6、114.61 mAh/g, 与未掺杂富锂锰材料的充放电容量相比, 分别提高了10.5%、7.8%、12.58%。   相似文献   

16.
采用溶胶—凝胶法制备了Na和Mg共掺杂的无钴富锂锰基正极材料,通过透射电子显微镜(HRTEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、充放电测试仪和电化学工作站对所制备样品的形貌、结构和电化学性能进行了测试。结果表明,所有样品颗粒大小约100nm,呈近似球形,样品均无杂相峰出现,都具有良好的层状结构,Na~+和Mg~(2+)对Ni和Mn离子的氧化状态没有影响。LNi018具有最好的电化学性能,初始放电容量为225.5mAh/g,库伦效率为78.0%,循环250周后容量保持率为83.1%。LNi018样品中Ni含量相对于其它样品较少,Ni ~(2+)和Mg~(2+)的价态相同,离子半径近似(Ni ~(2+)6.9nm,Mg~(2+)7.2nm),在晶格中Mg~(2+)取代了Ni~(2+)的位置,同时较大半径的Na~+(10.2nm)增大锂层间距,使晶体结构在充放电循环过程中更加稳定,因而能保持较高的放电电压和容量。  相似文献   

17.
采用水热法合成了无定形Li-Mn-Al-Co-O前驱体,经过后续热处理制备了Al-Co复合掺杂LiMn_2O_4正极材料Li_(1.035)Co_(0.02)Al_(0.025)Mn_(1.92)0O_4,并对其物理及电化学性能进行了测试。SEM、XRD结果表明:Al-Co的掺入对尖晶石锰酸锂的形貌和晶体结构会有微弱影响。电化学测试结果表明:Al-Co掺杂后,材料的循环性能和倍率性能都获得了显著的改善,其在0.5 C下的首次放电容量为113.9 m A.h/g,经过100次循环后比容量保持率仍然有92.4%,8 C下容量依然高达85.5 m A·h/g。  相似文献   

18.
采用共沉淀法制备了梯度核壳前驱体Ni_(0.8)Co_(0.08)Mn_(0.12)(OH)_2,并通过混锂煅烧合成了LiNi_(0.8)Co_(0.08)Mn_(0.12)O_2梯度正极材料。分别使用干混法和沉淀法对梯度正极材料进行了Al的掺杂改性。XRD及电解液浸泡实验表明,Al掺杂可以稳定梯度正极材料的层状结构并降低阳离子混排度,抑制正极材料在电解液中的溶解,从而提高材料的电化学性能。经沉淀法掺杂后正极材料在25℃下1 C循环100次容量保持率由92.5%提高到94.5%,55℃下1 C循环50次容量保持率由91.3%提高到95.8%。  相似文献   

19.
用固相反应法合成了Li~+掺杂的LiNi_(0.5)Mn_(1.5)O_4,并用XRD、SEM和恒电流充放电技术研究Li+掺杂对材料结构、形貌和充放电性能的影响。结果表明Li+掺杂和未掺杂LiNi_(0.5)Mn_(1.5)O_4均具有Fd3m尖晶石结构,掺杂的Li~+以固溶体形式存在,掺杂少量的Li+能显著提高材料循环性能,但放电比容量稍有降低,其中Li_(1.05)Ni_(0.45)Mn_(1.5)O_4的放电比容量为136.1 m A·h/g,循环30次后基本不变,具有很好的循环稳定性。  相似文献   

20.
锰酸锂具有尖晶石和层状两种结构,而层状LiMnO_2具有无毒、安全、理论容量高等优点。以专用的MnO_2在空气中高温焙烧分解Mn_2O_3,与电池级LiOH·H_2O为原料,采用高温固相法,合成层状锰酸锂,其最佳合成条件为:锂锰配比为1.03,球磨均匀,经600℃温度,氩气保护气氛下,合成8h,合成的层状LiMnO_2材料,其首次充放电容量分别达到279mAh/g和171mAh/g,经20次循环后容量保持率为96.2%。合成的层状LiMnO_2材料具有相对较好的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号