首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
冷镦钢冶炼用新型复合脱氧剂的研究   总被引:3,自引:0,他引:3  
用1kg MoSi2炉实验研究了成分(%)为≤0.08C,≤0.06Si,≥0.02Al的SWRM6冷镦钢用2.5kg/t Al块+2.5kg/t 复合脱氧剂包芯线或5.0kg/t AlMgFe块脱氧后钢中溶解氧含量-[O]和夹杂物成分的变化。结果表明,在1873℃钢中初始溶解氧为600×10-6~850×10-6时,Al脱氧30min后,[O]为6×10-6~17×10-6,再经喂复合脱氧剂包芯线30min后,除喂FeCaAl线的炉次[O]较高为13×10-6,喂FeSiMgBaCaAl、FeMg-CaAl、FeCa线炉次的[O]均达到3×10-6~4×10-6。单用70%~80%Al-10%~15%Mg-Fe合金脱氧30min后的炉次的[O]即达到4×10-6。典型夹杂物分析表明,用AlMgFe合金脱氧产生较大颗粒夹杂物,易上浮排除。  相似文献   

2.
易正明  肖慧 《特殊钢》2013,34(2):45-47
钢厂试验的低碳铝镇静钢(/%:0.036~0.037C、0.009Si、0.173~0.176Mn、0.012~0.013P、0.005~0.006S)生产流程为200 t LD转炉-钢包吹Ar精炼(LBAr)-230 mm×1 300 mm板坯连铸工艺。通过LD转炉挡渣出钢,并加入Mn-Fe、铝丸进行预脱氧和合金化3 min,钢水T[O]和[N]分别为91.8×10-6和19.4×10-6,在氩站经10~12 min 25~45 m3/h流量吹氩和3~5 min 15~25 m3/h的软吹氩后,T[O]降至42.3×10-6,[N]为22.0×10-6,中间包和铸坯T[O]分别为38.3×10-6和28.9×10-6,[N]分别为23.6×10-6和26.5×10-6。该流程生产的铸坯满足T[O]≤30×10-6的内控要求。经氩站精炼后,显微夹杂物去除率为30.0%,而大型夹杂物去除率达58.7%;显微夹杂物主要为脱氧产物Al2O3;大型夹杂物主要为SiO2、Al2O3、SiO2-Al2O3、CaO-SiO2-Al2O3。  相似文献   

3.
时速350 km高速钢轨要求钢中全氧含量T[O]≤20×10-6,非金属夹杂物B、C、D类≤1.0级。国内在重轨钢冶炼中,通常采用无铝脱氧工艺,即采用SiCaBa合金强化脱氧,形成了低熔点的Mn-Al-Si-Ba-Ca多元型氧化物夹杂,该类夹杂物在精炼中全部排出钢液。研究了铁水预处理脱硫-150 t顶底复吹转炉-LF-VD-280 mm ×380 mm连铸流程冶炼钢轨钢U71MnG时的夹杂物行为,包括无铝脱氧工艺钢轨钢中氧化物夹杂的组成及特征,转炉终点[C]对钢水氧活度的影响以及LF精炼渣碱度和VD后期软吹氩搅拌对钢氧含量和夹杂物的影响。结果得出,钢轨头部的≤20μm氧化物夹杂为精炼时二次脱氧产物,通过控制转炉终点[C]>0.15%,控制精炼渣碱度(CaO)/(SiO2)=2.5~3,∑(FeO+MnO)≤1.0%可有效降低钢轨钢中氧化物的数量和尺寸。  相似文献   

4.
通过实验研究SiCa(Si71%-Ca28%)和SiCaBa(Si52%-Ca14%-Ba14%-Al1.82%)合金对304N不锈钢脱氧和夹杂物改性及总氧含量的影响。加入SiCa或SiCaBa合金后,夹杂物中MnO消失,并改性为CaO-Al2O3-SiO2-MgO-(BaO)体系,塑性增强。SiCa处理相比于无脱氧剂处理,夹杂物数密度由350个/mm2降低至170个/mm2,尺寸由0.8μm增加至2.7μm,面积占比为0.05%,但全氧含量并未明显降低。SiCaBa合金处理后夹杂物熔点进一步降低,塑性进一步增强。夹杂物数密度降低至155个/mm2,尺寸增加至3μm,面积占比为0.049%。全氧含量进一步降低,由111×10-6降至36×10-6。此外,在加入精炼渣15 min后加入SiCaBa合金,对比30 min后加入的试验结果表明:夹杂物的数量密度进一步下降到70个/mm2,直径3.4...  相似文献   

5.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

6.
分析了“BOF-RH-CC”和“BOF-LF-CC”两种工艺流程生产的ML08Al钢中非金属夹杂物类型、数量密度及总氧变化。结果表明,两种流程转炉脱氧合金化后钢中非金属夹杂物主要为Al2O3;采用“BOF-LF-CC”流程,LF精炼结束钢中部分非金属夹杂物由Al2O3转变为Al2O3·CaO和Al2O3·MgO;而采用“BOF-RH-CC”流程,RH真空后钢中非金属夹杂物仍然以Al2O3为主。转炉出钢脱氧合金化后,钢水中总氧含量27.8×10-6~31.5×10-6,经过LF精炼后,总氧含量为20.2×10-6~22.5×10-6,而经过RH处理后,总氧含量为14.7×10-6~15.3×10-6。LF精炼和RH真空处理对夹杂物数量的去除率分别为49.6%和80.9%。因此,“BOF-RH-CC”工艺流程生产的ML08Al钢水洁净度优于“BOF-LF-CC”工艺流程生产的钢水。  相似文献   

7.
方宇荣  陈正权 《特殊钢》2020,41(6):64-67
采用全流程系统取样的方式,对120 t BOF-LF-VD-CC工艺生产20CrMnTi齿轮钢中氧含量和夹杂物特性的演变规律进行系统的分析和研究。实验结果表明,采用铝脱氧和高碱度[(CaO)/(SiO2)=3.8~7]还原渣工艺,能使铸坯中T[O]低于20×10-6;中间包钢水中平均T[O]增加6×10-6;齿轮钢冶炼过程中,夹杂物完成了Al2O3→Al2O3-MgO→Al2O3-CaO-MgO的转变。  相似文献   

8.
王国承  黄浪 《特殊钢》2009,30(5):31-33
通过鱼雷罐铁水喷粉脱硫处理,转炉加低硫废钢、出钢挡渣和加Si-Fe、Mn-Fe脱氧,控制终点[C]0.026%~0.030%,RH脱气处理和加Mn-Fe合金化,LF高碱度渣精炼和喂Ca线冶炼管线钢(%:0.039~0.042C、1.56~1.62Mn、0.01Ti、0.05Nb、0.03V)。检验结果表明,生产管线钢铸坯中的硫含量为(10~18)×10-6,T[O]30×10-6,铸坯中大部分夹杂物尺寸≤40μm,主要夹杂物为钙铝酸盐,Al2O3夹杂和单独存在的MnS夹杂很少,有利于提高管线钢抗HIC(氢致开裂)性能。  相似文献   

9.
杨虎林  何平  翟玉春 《特殊钢》2013,34(2):16-19
超低氧含量和低夹杂物级别是高品质轴承钢的重要指标。分析了高品质轴承钢中超低氧含量和非金属夹杂物控制的影响因素,如出钢除渣、铝脱氧、高碱度精炼渣、真空或非真空条件下的长时间搅拌和合理的生产工艺流程等。得出生产5×10-6[O]、≤1×10-6[H]和≤12×10-6[Ti]的超纯净高品质轴承钢的关键是对各冶炼工序的严格控制。文中分析了国内轴承钢的质量并提出了研究方向。  相似文献   

10.
0.88%Si无取向硅钢的生产工艺为100 t BOF出钢时加300kg石灰,终点[C]0.035%~0.05%,出钢温度1640~1650℃,RH吹氧脱碳,加99.0%Al-Fe合金6.69 kg/t,加70%Si-Fe合金15.70 kg/t,70 mm板坯连铸过程全程保护浇铸,使用镁质碱性中间包覆盖剂。分析结果表明,RH终点[O]28×10-6,铸坯[O]22×10-6,RH-前[N]为16×10-6,RH过程增氮4×10-6,RH结束到铸坯增氮6×10-6;RH脱碳终点时钢中夹杂物以球形MnO·Al2O3为主;RH出站时以不规则形状的Al2O3为主,并伴有少量单独存在的CaS夹杂;中间包钢液内的夹杂物主要以不规则形状的Al2O3为主;铸坯中多为不规则形状的Al2O3以及少量AlN,还有少量由结晶器卷渣引起的含Na成分的复合夹杂物。  相似文献   

11.
余国松  杜建新 《特殊钢》2010,31(3):38-40
EAF-LF-VD冶炼60Si2MnA和55CrSiA弹簧钢时EAF出钢过程加17~23 kg/t低铝硅铁(Al含量≤0.50%)脱氧,LF补加3~6 kg/t硅铁,并控制精炼渣的碱度≤2.5,可控制[Als]≤60×10-6,总[O](9~20)×10-6,A类夹杂级别≤0.5,B类≤0.5,C类≤1.5,D类≤0.5。用该脱氧工艺冶炼的钢水可浇注性强,适合大批量工业性生产。  相似文献   

12.
刘鹏 《特殊钢》2018,39(3):25-27
生产的高压锅炉用钢SA-210A1(/%:0.08~0.11C,0.22~0.24Si,0.72~0.74Mn,0.007~0.010P,0.004~0.005S,0.010~0.015V,0.025~0.035Ti,0.012~0.018Alt)的冶金工艺流程为55%铁水+废钢-100 t EAFLF-VDΦ500 mm坯连铸-轧制成Φ130mm圆钢。通过低铝脱氧工艺-EAF终点控制[C]≤0.06%,[P]0.006%~0.010%,出钢加石灰12 kg/t,AD粉(/%:10~13A1,55~60Al2O3,5~8SiO2, 5~8Mg0)3 kg/t,700%Al钢芯铝3 kg/t预脱氧;LF采用5.76~6.06高碱度Al2O3渣系,LF终点喂0.40 kg/t钙线,软吹≥10 min;中间包钢水过热度15~25℃连铸结晶器和末端电磁搅拌,拉速0.31~0.32 m/min,铸坯缓冷≥48 h等工艺措施,SA-210A1钢中的[O]16×10-6~ 24×10-6,[N]65×10-6~80×10-6,[Alt]≤0.020%,铸坯和热轧圆钢低倍组织和非金属夹杂物均满足要求  相似文献   

13.
核电焊材用钢508 Ⅲ(/%:0.09~0.12C,0.30~0.40Si,1.45~1.65Mn,≤0.008P,≤0.008S,0.45~0.60Mo,0.60~0.75Ni)的生产工艺流程为20t EAF-LF-VD-4t铸锭-锻造150 mm×150 mm坯-轧制Φ5.5mm盘条。采用精选炉料,以及高碱度渣、高FeO含量,钢水温度1550~1570℃等措施控制,电弧炉终点[P]≤0.002%,并选用低磷合金,使钢中磷含量≤0.006%;LF采用硅钙合金沉淀脱氧,SiC粉扩散脱氧、CaO-Al2O3-SiO2渣系,碱度5.0~5.5,VD真空度≤67Pa,Ar流量30~50 L/min,保护浇铸等措施后,3炉钢的分析结果表明,钢中气体含量为1.3×10-6~1.5×10-6[H],10×10-6~14×10-6[O]和44×10-6~58×10-6[N],满足核电焊材用钢508Ⅲ洁净度的要求。  相似文献   

14.
X80管线钢LF-RH二次精炼过程夹杂物行为及控制   总被引:1,自引:0,他引:1  
研究了210 t BOF-LF-RH-CC工艺流程生产X80管线钢(%:0.041~0.044C、0.15Si、1.78~1.80Mn、0.007~0.010P、0.000 8~0.001 2S、0.039~0.047[Al]s)时精炼过程中夹杂物的变化。在BOF出钢阶段采用加Al强脱氧(0.01%~0.02%[Al]s),LF精炼过程采用高碱度、强还原性精炼渣(精炼渣成分%:50~58CaO、7~10MgO、20~25Al2O3、4~7SiO2、0.5~1.4TFe),炉渣和钢液反应活跃,使得钢中Al2O3夹杂物很快向液态钙铝酸盐和部分液态CaO-MgO-Al2O3复合夹杂物转变。液态夹杂物通过碰撞、聚合、长大及上浮去除,提高了钢液的洁净度。浇铸前T[O]降到(7~10)×10-6,钢中夹杂物尺寸在3~5μm,试验炉次的热轧板内未发现大尺寸的低熔点钙铝酸盐类长条夹杂物。  相似文献   

15.
代刚  朱志红 《特殊钢》2015,36(4):31-33
10炉非调质钢49MnVS3(/%:0.46~0.48C,0.30~0.40Si,0.88~0.92Mn,0.001~0.014P,0.004~0.005S,0.09~0.10V,0.19~0.22Cr)由100 t EBT DC EAF-LF-VD-260 mm×340 mm坯连铸-Φ140~150 mm材轧制流程生产。采用兑入75%铁水,EAF前期脱磷至≤0.015%P,出钢前[C]为0.20%~0.30%,精炼时加150~200kg碳化硅,控制LF精炼渣碱度2.80~2.95,(CaO)/(Al2O3)=1.2~1.6,VD后喂1.5 m/t钙铁线,软吹时间≥15min等工艺措施,49MnVS3钢中[N]、[H]和[O]分别为130×10-6~220×10-6,1.2×10-6~1.5×10-6和5×10-6~11×10-6,成品材晶粒度≥5级,非金属夹杂物和低倍组织均≤1.5级,组织(带状≤1级)和力学性能(R803~883 MPa,Rel 517~590 MPa, A 16%~21%,Aku 39~99 J)均满足标准要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号