首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
探讨了火花源原子发射光谱法测定FeCuNbSiB合金中铜、铌、硅和硼的分析条件。在高纯氩气(φ≥99.999%)流量为180 L/h和氩气冲洗时间为4 s,预燃(HEPS)时间为6 s,积分时间为8 s(硅)、8 s(铌)、3 s(硼)和3 s(铜)的最佳分析条件下,用自制的标准样品绘制了铜、铌、硅和硼的校准曲线。在校正了共存元素干扰影响后,拟合校准曲线。其中,用B 345.1 nm/Fe 360.7 nm 分析线对绘制高含量硼的校准曲线,硼的分析范围为0.94%~3.37%;用Nb 319.5 nm/Fe 297.1 nm分析线对绘制铌的校准曲线,使仪器软件中已建立的钢中铌的校准曲线得到了延伸,铌的分析范围扩展为0.002 0%~7.16%;用Si 390.6 nm/Fe 281.3 nm分析线对和Cu 212.3 nm/Fe 216.2 nm 分析线对分别绘制了硅和铜的校准曲线,使仪器软件中已建立的钢中硅和铜的校准曲线得到了充实,硅的分析范围为0.010 0%~19.40%,铜的分析范围为0.001 3%~3.95%。用此方法测定了FeCuNbSiB合金分析样品中铜、铌、硅和硼含量,其测定结果的相对标准偏差(n=8)小于1.0%,所得的分析结果与用重量法和电感耦合等离子体原子发射光谱法(ICP-AES)的测定值一致,并且实现了分析样品的一次激发可同时测定FeCuNbSiB合金分析样品中铜、铌、硅和硼以及其他合金元素。  相似文献   

2.
丁爱梅 《冶金分析》2014,34(6):28-32
建立了利用火花源原子发射光谱法同时测定热镀铝锑锌合金中的合金元素铝、锑及杂质元素铜、镉、铁、铅的分析方法。考察了光源参数、分析线参数、共存元素干扰等因素对测定的影响。在选定的最佳光源激发参数(冲洗时间为2 s, 预燃时间为4 s, 总的火花积分时间为14 s)条件下, 采用自制校准样品, 对选定的铝、锑、镉、铜、铁、铅元素分析线绘制了最佳校准曲线。其中, 合金元素铝分析范围从0.000 2%~15.0%, 在考虑了共存元素干扰校正后, 3条铝元素分析线线性相关系数均达到0.999以上;而锑元素分析范围从0.000 3%~0.30%, 线性相关系数达到0.99以上;其他杂质元素的线性相关系数也均在0.99以上。通过对实际生产样品的分析, 待测元素的相对标准偏差(RSD, n=8)在0.48%~8.3%之间, 随机抽取的几个样品的测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本吻合。  相似文献   

3.
赵涛  缪红 《冶金分析》2016,36(4):34-38
介绍了火花源原子发射光谱在铁基非晶合金钢中Si、B元素含量测定方面的研究。通过对非晶合金钢中Si和B分析谱线强度稳定性的试验比较,确定了Si的分析谱线为212.41 nm,B的分析谱线为345.14 nm;通过预燃试验确立了分析Si、B的最佳预燃时间为13 s 。采用部分国际标样和研制的内控样品绘制Si和B的校准曲线,在扣除了元素干扰后进行了曲线拟合。用Si 212.41 nm分析谱线绘制高含量Si(质量分数3.15%~7.04%)的校准曲线,使原有软件中曲线范围拓宽为0.003%~7.04%;用B 345.14 nm分析谱线绘制高含量B(质量分数0.90%~3.31%)的校准曲线,使B校准曲线范围拓宽为0.000 1%~3.31%。用实验方法测定非晶合金样品中的Si和B含量,测定结果的相对标准偏差(RSD,n=10)均不超过1.0%;准确度试验结果表明实验方法的测定值与电感耦合等离子体原子发射光谱法(ICP-AES)的测定值具有较好的一致性。  相似文献   

4.
样品经盐酸、硝酸和氢氟酸溶解后,选择Cu 327.393 nm作为分析线,选用多元光谱拟合(MSF)校正谱线干扰,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定含铌镍基高温合金中铜的方法。结果表明,含铌镍基高温合金中的共存元素铌对测定元素铜存在严重的谱线干扰,使ICP-AES测定结果存在较大误差,而使用MSF可有效校正铌对铜的谱线干扰,铜的质量分数在0.001 5%~0.025%范围内与发射强度呈线性,校准曲线线性相关系数R2=1.000 0;方法检出限为0.000 2%。按照实验方法测定含铌镍基高温合金标准样品中的铜,结果的相对标准偏差(RSD,n=8)为2.1%,测定值与认定值相符。  相似文献   

5.
朱诗文  沈真 《冶金分析》2022,42(5):80-84
钛元素含量作为硅铁的一项指标,对其准确、快速测定十分重要。选择硝酸-氢氟酸-高氯酸酸溶体系溶解样品,通过高氯酸冒烟使硅挥发并去除,并在配制钛标准溶液系列时,通过基体匹配法来消除铁基体效应的影响。选择Ti 334.94 nm为分析谱线,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定硅铁中痕量钛。共存元素的干扰试验结果表明:共存元素钙和锰对钛元素的测定无影响。在优化的工作条件下,建立钛元素的校准曲线,校准曲线的线性相关系数r为0.999 8;方法检出限为0.000 54%(质量分数,下同),定量限为0.001 8%。采用实验方法测定硅铁标准样品和硅铁试样中痕量钛,测定结果的相对标准偏差(RSD,n=11)为1.8%~2.7%;标准样品YSB14614-2008和YSBC28605a-2013的测定值和标准值相符合,硅铁试样中钛(wTi=0.005 7%)的加标回收率为99%~104%。  相似文献   

6.
采用火花源原子发射光谱法快速定量分析了NiFeCr合金中氮。文中对测定氮的光谱线的选择、氮的分析条件、样品的分取及处理、共存元素的影响和氮的校准曲线的拟合等问题进行了讨论。用此方法分析了NiFeCr合金样品中氮含量,其测定结果的相对标准偏差小于9%,所得分析结果与使用氧氮分析仪时氮的测定值一致,并且实现了分析样品一次激发可同时测定NiFeCr合金中氮和合金元素。方法满足了冶炼NiFeCr合金生产的需要。  相似文献   

7.
概括了铁基非晶软磁合金和纳米晶合金的发展历史和现状,分别详述了高饱和磁化强度(Bs)铁基块体和薄带非晶以及纳米晶合金近年来的研究成果.主要内容包括:高饱和磁化强度块体铁基非晶软磁合金成分和性能,高饱和磁化强度铁基非晶薄带软磁合金的成分和性能,高饱和磁化强度铁基纳米晶合金的组织、结构和性能,各类元素对合金磁性能的影响.为进一步研究高饱和磁化强度的铁基软磁材料提供了有价值的参考.   相似文献   

8.
使用盐酸溶解样品,在微酸性介质中,铁与硫氰酸钾、1,10-二氮杂菲形成紫红色三元络合物,用甲基异丁基酮萃取该络合物,于分光光度计波长520 nm处测量其吸光度,从校准曲线上查得铁含量,从而建立了使用分光光度法测定镁锰铈合金中铁的方法。试验的最佳条件为:水相酸度在3%~7%(V/V),硫氰酸钾溶液加入量为2 mL,1,10-二氮杂菲乙醇溶液加入量为2 mL,显色时间为2 min,甲基异丁基酮加入量为5 mL,振荡时间为60 s。结果表明,试液中铁质量在1~9 μg范围内与吸光度呈线性,校准曲线的线性回归方程为y=14.743 x-0.207,相关系数r=0.999 3;方法中铁的检出限为0.000 037%(质量分数)。按照实验方法测定两个镁锰铈合金样品中铁,结果的相对标准偏差(RSD,n=11)分别为0.23%和0.18%,结果与电感耦合等离子体质谱法(ICP-MS)测定结果相吻合;加标回收率为97%~107%。  相似文献   

9.
徐振 《冶金分析》2020,40(9):48-52
氮含量是钒氮合金质量的重要技术指标之一,目前国内主要采用湿法分析氮,结果可靠但效率低,因此有必要建立快速测定钒氮合金中氮含量的方法。实验探讨了采用杜马斯燃烧法测定钒氮合金中氮的方法,对样品粒径、称样量、燃烧时间、助熔剂用量进行了优化。实验选定条件为:样品粒径不大于0.074mm,称样量0.0400~0.0600g,燃烧时间270s,采用0.1g纯镍和0.1g纯钨作助熔剂。结果表明:在优化实验条件下,氮含量为13.14%~16.64%(质量分数,下同),氮的质量分数与对应的峰面积呈线性关系,校准曲线的线性相关系数r为0.9996。按照实验方法测定钒氮合金有证标准物质中氮,测定值与标准值的相对误差为0.21%~0.38%。方法用于实际样品中13.55%~15.56%氮的测定,结果的相对标准偏差(RSD,n=10)为0.42%~0.50%。  相似文献   

10.
原子发射光谱法测定合金结构钢和电工钢中氮   总被引:3,自引:2,他引:1       下载免费PDF全文
叙述了用原子发射光谱法快速定量分析合金结构钢和电工钢中氮。文中对测定氮的光谱线的选择、氮的分析条件、分析样品的制备、共存元素的影响和钢中氮的校准曲线的拟合等问题进行了讨论。本方法氮的分析范围为0.0005%~0.040%,检出限为0.000374%,分析时间小于2min(包括样品制备和样品两次激发分析)。实现了样品一次激发可同时测定氮和合金元素以及酸溶铝、酸不溶铝。  相似文献   

11.
沈健 《冶金分析》2020,40(5):63-67
铌锰铁是炼钢过程中的一种重要原料,建立测定铌和锰的方法尤为重要。铌锰铁中铌和锰为主元素,含量高,运用化学湿法分析时主元素之间会相互干扰,影响测定的准确性。实验采用盐酸、硝酸、氢氟酸溶解样品,选择Nb 269.706nm为分析线、Mo 281.618nm为内标线;选择Mn 293.305nm为分析线、V 292.401nm为内标线,建立了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定铌锰铁中铌和锰的方法。共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰。各待测元素的校准曲线线性相关系数均大于0.9995。实验方法用于铌锰铁实际样品中铌和锰的测定,铌测定结果的相对标准偏差(RSD,n=11)为0.26%~0.28%;锰测定结果的相对标准偏差(RSD,n=11)为0.29%~0.33%。采用实验方法对铌锰铁实际样品中铌和锰进行测定,测得结果分别与日本标准JIS G 1328—1982中丹宁酸水解重量法测定铌和国标GB/T 5686.1—2008中高氯酸氧化滴定法测定锰的结果基本一致。  相似文献   

12.
用盐酸和过氧化氢(或硝酸)溶解样品,采用多元谱线拟合技术(MSF)校正光谱干扰,消除了合金中镍、铬、钴、铝、钛、钨、钼、铁和锰等共存元素对测定的影响,实现了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定镍-铬-钴系样品中硼的测定。分别采用B 249.677nm、B 208.957nm和B 182.578nm为分析谱线,在合成标样和镍-铬-钴系标样两种校准模式下绘制两种校准曲线,结果表明,无论采用何种校准模式,若不选用MSF模型进行校正,则在各分析谱线处所得校准曲线的相关系数均较差,其最大值仅为0.828(谱线B 208.957nm),而采用MSF模型校正后,在谱线B 249.677nm和B 208.957nm处的相关系数均大于0.990,B 208.957nm处的相关系数大于0.920。采用MSF模型进行校正,分别以合成标样和镍-铬-钴系标样两种校准模式对3个不同含量水平的镍-铬-钴系标样进行测定,结果表明,采用合成标样校准模式所得结果要优于镍-铬-钴系标样校准模式。因此,将MSF模型校正和合成标样校准模式作为测定镍-铬-钴系样品中硼的分析条件。考虑到若采用谱线B 182.578nm为分析谱线,会增加分析时间和增大成本,同时在谱线B 208.957nm处的相关系数、与认定值的吻合性均低于谱线249.677nm,实验最终选用B 249.677nm作为分析谱线。精密度试验结果表明,样品A40和198在谱线B 249.677nm处测定结果的相对标准偏差(RSD,n=8)为2.0%~11.0%,方法检出限为0.0005%。在选定的实验条件下,对GH4720Li合金样品进行分析,并采用离子选择电极法进行方法对照试验,结果表明两种方法测定结果基本一致。  相似文献   

13.
应用分光光度法、电感耦合等离子体原子发射光谱法测定钢中的酸溶铝不能满足炉前快速分析要求。通过正交实验确定冲洗时间5 s、预燃时间4 s、曝光时间16 s、氩气流量180 L/h的最佳分析条件;以Fe 2:281.329 nm为内标线,Alsol 396.2 nm为分析线,实现了峰值积分-火花源原子发射光谱法对低合金钢中酸溶铝的分析。采用具有浓度梯度的标准样品绘制校准曲线,对曲线进行线性回归,并进行元素间的干扰校正,方法适用于低合金钢中质量分数为0.000 1%~0.50%的酸溶铝的测定。选择4个低合金钢标准样品进行精密度考察,测定结果的相对标准偏差(RSD,n=10)在0.78%~4.9%范围内;采用方法对4个中低合金钢标准样品和1个自制标样09Cr2AlMoRE进行分析,结果同认定值或滴定法测定结果基本一致,且测量误差满足国标GB/T222-2006的要求。方法适用于炉前快速分析。  相似文献   

14.
采用X射线荧光光谱分析钛合金时, 由于共存元素之间存在严重谱线干扰和基体效应, 使元素含量与谱线强度之间相关性差, 影响测定结果的准确度和精密度, 尤其是铬、钒、钛 3元素共存的钛合金是X射线荧光光谱检测遇到的难题。试验通过利用多套钛合金标准样品制作校准曲线, 选择适合谱线和测试条件, 校正谱线重叠干扰和基体效应的方法有效地解决钛合金中共存元素的干扰, 其中谱线重叠干扰通过测量计算钛元素Kβ线对钒元素Kα线的重叠系数, 钒元素Kβ线对铬元素Kα线的重叠系数来解决。方法已用于钛合金样品中钼、锡、锆、钒、铝、锰、铁、铬、钨、镍、铜、硅共12个主次元素含量的测定, 测定值与化学法测定值相符, 各元素测定结果的相对标准偏差(RSD, n=10)均小于1.0%。方法可供航空用α、β、α+β 3类钛合金中主次元素的检测。  相似文献   

15.
采用硝酸、氢氟酸和高氯酸冒烟溶解样品,选取Nb 322.548nm、V 310.230nm和Zr 319.418nm为分析谱线,采用基体匹配法配制标准溶液系列并绘制校准曲线消除基体效应的影响;使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铌、钒和锆,从而建立低碳低钛硅铁中铌、钒和锆的测定方法。共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰影响。各待测元素校准曲线的线性相关系数均大于0.9995;各元素的检出限分别为0.0006%,0.0005%和0.0005%。实验方法应用于低碳低钛硅实际样品中铌、钒、锆的测定,结果的相对标准偏差(RSD,n=10)为1.2%~4.7%,回收率为98%~104%。按实验方法测定低碳低钛硅铁样品中铌、钒、锆,测定结果与YB/T 4395—2014、GB/T 223.14—2000和GB/T 223.30—1994测定值相符。  相似文献   

16.
采用硫酸(1+2)溶解样品,选择Ce 418.659nm、Er 326.478nm、Gd 342.246nm、La 408.671nm、Nd 406.108nm和Y 371.029nm为分析线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定Ce、Er、Gd、La、Nd、Y,从而建立了钛合金中Ce、Er、Gd、La、Nd、Y的测定方法。对共存元素的干扰情况进行了研究,得到各干扰元素的干扰系数,采用干扰系数校正法解决谱线干扰问题。各元素质量分数在0.005%~2.00%范围内校准曲线线性关系良好,相关系数均大于0.999 9,方法检出限为3~14μg/g。采用实验方法对钛合金标准样品、钛合金样品中Ce、Er、Gd、La、Nd、Y进行测定,结果的相对标准偏差(RSD,n=6)为0.63%~8.1%,结果与认定值或电感耦合等离子体质谱法(ICP-MS)测定值基本一致。  相似文献   

17.
镨钕钆金属是钕铁硼合金的新兴原料,具有有害元素含量低、产品成分稳定、成本低的优势,而快速准确地测定镨钕钆合金中镨、钕、钆配分量对产品的质量控制具有重要意义。实验采用硝酸溶解样品,在仪器的最佳分析条件下,选择Pr 418.948nm、Nd 445.156nm、Gd 342.246nm为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)对镨钕钆合金中镨、钕、钆配分量进行测定。讨论了溶解样品条件、共存元素干扰等对测定的影响。结果表明,硝酸易于溶解镨钕钆金属夹杂碳化物和氮化物。样品中共存稀土元素和铁、钙、镁、铝、硅、钼、钨等非稀土元素对镨、钕、钆配分量测定的影响可以忽略。实验方法用于测定3个镨钕钆合金中镨、钕、钆配分量,结果的相对标准偏差(RSD,n=11)为0.070%~0.56%;分别按照实验方法与X射线荧光光谱法(XRF)测定镨钕钆内控标样中镨、钕、钆配分量,两种方法的测定结果一致。  相似文献   

18.
罗海霞  王强 《冶金分析》2022,42(2):40-46
钴铬钨系合金常温常压下酸溶分解较为困难。实验利用微波消解提高溶样时的温度和压力,在盐酸、硝酸和氢氟酸介质中使样品充分消解。样品溶解后,定容分取,加入酒石酸溶液,在稀盐酸介质中,以W 207.912 nm为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定钴铬钨系合金中钨的方法。结果表明:共存元素对测定结果基本没有影响。在选定的操作条件下,校准曲线的线性相关系数为0.999 9;钨的检出限为0.002 3%(质量分数)。按照实验方法测定钴铬钨系合金粉末中钨,结果的相对标准偏差(RSD,n=11)小于3%,加标回收率为97.4%~102.3%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号