首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In bridge engineering, the three-dimensional behavior of a bridge system is usually reduced to the analysis of a T-beam section, loaded by an equivalent fraction of the applied live load, which is called the live load distribution factor (LDF). The LDF is defined in the both the AASHTO Standard Specifications and the LRFD Specifications primarily for concrete slabs and has inherent applicable limitations. This paper provides explicit formulas using series solutions for LDF of orthotropic bridge decks, applicable to various materials but intended for fiber-reinforced polymer (FRP) decks. The present formulation considers important parameters that represent the response characteristics of the structure that are often omitted or limited in the AASHTO Specifications. A one-term series solution is proposed based on the macroflexibility approach, in which the bridge system is simplified into two major components, deck and stringers. The governing equations for the two components are obtained separately, and the deflections and interaction forces are solved by ensuring displacement compatibility at stringer lines. The LDF is calculated as the ratio of the single stringer interaction force to the summation of total stringer interaction forces. To verify this solution, a finite-element (FE) parametric study is conducted on 66 simply supported concrete slab-on-steel girder bridges. The results from the series solution correlates well with the FE results. It is also illustrated that the series solution can be applied to predict LDF for FRP deck-on-steel girder bridges, by favorable comparisons among the analytical, FE, and testing results for a one-third-scale bridge model. The scale test specimen consists of an FRP sandwich deck attached to steel stringers by a mechanical connector. The series solution is further used to obtain multiple regression functions for the LDF in terms of nondimensional variables, which can be used for simplified design purposes.  相似文献   

2.
The design of a deck-and-stringer bridge system is usually reduced to the analysis of a T-beam section, loaded by concentrated loads corresponding to an equivalent fraction of the applied truck load. This equivalent load is defined by wheel load–distribution factors, which approximate the overall behavior of the bridge superstructure. In this paper, a one-term approximation of a macroflexibility series solution including deformations for fiber-reinforced polymer (FRP) deck-and-stringer orthotropic bridge systems, is used to develop explicit expressions for symmetric and asymmetric load distribution factors. It is significant that the equations presented herein include important parameters that represent, as accurately as possible, the response characteristics of the super structure, such as the geometry and material properties of the FRP deck and stringers, bridge aspect ratio, and number and spacing of stringers. As an illustration in actual design applications, the formulation presented in this paper is used to develop an analytical method for FRP deck-and-stringer bridge systems, and the method is verified by predicting the response of an all FRP model bridge in the lab and an FRP deck on steel stringers in the field. The results of the present formulation compare well with experimental lab and field results. The simplified analysis presented in this paper can be used with sufficient accuracy for the design of composite FRP deck on stringers bridges.  相似文献   

3.
The American Association of State Highway and Transportation Officials (AASHTO) specifications provide formulas for determining live load distribution factors for bridges. For load distribution factors to be accurate, the behavior of the bridge must be understood. While the behavior of right-angle bridges and bridges with limited skews is relatively well understood, that of highly skewed bridges is not. This paper presents a study aimed at developing a better understanding of the transverse load distribution for highly skewed slab-on-steel girder bridges. The study involved both a diagnostic field test of a recently constructed bridge and an extensive numerical analysis. The bridge tested and analyzed is a two-span, continuous, slab-on-steel composite highway bridge with a skew angle of 60°. The bridge behavior is defined based on the field test data. Finite-element analyses of the bridge were conducted to investigate the influence of model mesh, transverse stiffness, diaphragms, and modeling of the supports. The resulting test and analytical results are compared with AASHTO’s Load and Resistance Factor Design formulas for live load distribution to assess the accuracy of the current empirical formulas.  相似文献   

4.
Fiber-reinforced polymer (FRP) composite bridge deck panels are high-strength, corrosion resistant, weather resistant, etc., making them attractive for use in new construction or retrofit of existing bridges. This study evaluated the force-deformation responses of FRP composite bridge deck panels under AASHTO MS 22.5 (HS25) truck wheel load and up to failure. Tests were conducted on 16 FRP composite deck panels and four reinforced concrete conventional deck panels. The test results of FRP composite deck panels were compared with the flexural, shear, and deflection performance criteria per Ohio Department of Transportation specifications, and with the test results of reinforced concrete deck panels. The flexural and shear rigidities of FRP composite deck panels were calculated. The response of all panels under service load, factored load, cyclic loading, and the mode of failure were reported. The tested bridge deck panels satisfied the performance criteria. The safety factor against failure varies from 3 to 8.  相似文献   

5.
This paper presents a comparison between the live load distribution factors of simple span slab-on-girders concrete bridges based on the current AASHTO-LRFD and finite-element analysis. In this comparison, the range of applicability limits specified by the current AASHTO-LRFD is fully covered and investigated in terms of span length, slab thickness, girder spacing and longitudinal stiffness. All the AASHTO-PCI concrete girders (Types I–VI) are considered to cover the complete range of longitudinal stiffness specified in the AASHTO-LRFD. Several finite-elements linear elastic models were investigated to obtain the most accurate method to represent the bridge superstructure. The bridge deck was modeled as four-node quadrilateral shell elements, whereas the girders were modeled using two-node space frame elements. The live load used in the analysis is the vehicular load plus the standard lane load as specified by AASHTO-LRFD. The live load is positioned at the longitudinal location that produced the extreme effect, and then it is moved transversely across the bridge width in order to investigate all possibilities of one-lane, two-lane and three-lane design loads. A total of 886 bridge superstructure models were built and analyzed using the computer program SAP2000 to perform this comparison. The results of this study are presented in terms of figures to be practically useful to bridge engineers. This study showed that the AASHTO-LRFD may significantly overestimate the live load distribution factors compared to the finite-element analysis.  相似文献   

6.
This paper presents simple relationships for calculating live-load distribution factors for glued-laminated timber girder bridges with glued-laminated timber deck panels. Analytical models were developed using the Ansys 113 finite-element program, and the results were validated using recorded data from four in-service timber bridges. The effects of the bridge span length, the spacing between girders, and the bridge width on the distribution of the live load were investigated by using the validated models. The live-load distribution factors obtained from the field test and the analytical models were compared with those obtained using the AASHTO LRFD Bridge Design Specifications2 live-load distribution relations. The comparison showed that the live-load distribution factors obtained by using the AASHTO LRFD Bridge Design Specifications2 were conservative. For this reason, statistical methods were used to develop accurate relationships that can be used to calculate the live-load distribution factors in the design of glued-laminated girder bridges.  相似文献   

7.
This paper presents the results of a parametric study related to the wheel load distribution in one-span, simply supported, multilane, reinforced concrete slab bridges. The finite-element method was used to investigate the effect of span length, slab width with and without shoulders, and wheel load conditions on typical bridges. A total of 112 highway bridge case studies were analyzed. It was assumed that the bridges were stand-alone structures carrying one-way traffic. The finite-element analysis (FEA) results of one-, two-, three-, and four-lane bridges are presented in combination with four typical span lengths. Bridges were loaded with highway design truck HS20 placed at critical locations in the longitudinal direction of each lane. Two possible transverse truck positions were considered: (1) Centered loading condition where design trucks are assumed to be traveling in the center of each lane; and (2) edge loading condition where the design trucks are placed close to one edge of the slab with the absolute minimum spacing between adjacent trucks. FEA results for bridges subjected to edge loading showed that the AASHTO standard specifications procedure overestimates the bending moment by 30% for one lane and a span length less than 7.5 m (25 ft) but agrees with FEA bending moments for longer spans. The AASHTO bending moment gave results similar to those of the FEA when considering two or more lanes and a span length less than 10.5 m (35 ft). However, as the span length increases, AASHTO underestimates the FEA bending moment by 15 to 30%. It was shown that the presence of shoulders on both sides of the bridge increases the load-carrying capacity of the bridge due to the increase in slab width. An extreme loading scenario was created by introducing a disabled truck near the edge in addition to design trucks in other lanes placed as close as possible to the disabled truck. For this extreme loading condition, AASHTO procedure gave similar results to the FEA longitudinal bending moments for spans up to 7.5 m (25 ft) and underestimated the FEA (20 to 40%) for spans between 9 and 16.5 m (30 and 55 ft), regardless of the number of lanes. The new AASHTO load and resistance factor design (LRFD) bridge design specifications overestimate the bending moments for normal traffic on bridges. However, LRFD procedure gives results similar to those of the FEA edge+truck loading condition. Furthermore, the FEA results showed that edge beams must be considered in multilane slab bridges with a span length ranging between 6 and 16.5 m (20 and 55 ft). This paper will assist bridge engineers in performing realistic designs of simply supported, multilane, reinforced concrete slab bridges as well as evaluating the load-carrying capacity of existing highway bridges.  相似文献   

8.
Illinois began full transition to the American Association of State Highway and Transportation Officials load and resistance factor design (LRFD) bridge design specifications from the traditional load factor design code or standard specifications in 2002. To facilitate implementation of the new specification, engineers from the Illinois Department of Transportation undertook a series of investigations. The studies focused on interpretation of LRFD for the design of typical bridges in Illinois and the simplification of its procedures for determination of live load lane distributions to primary superstructure girders. Some important presented results from the conducted investigations are believed not only relevant to bridge design in Illinois, but to other states and jurisdictions which employ or will employ LRFD in the near future. The initial simplifications and interpretations focused on concrete deck-on-steel girder bridges and were subsequently expanded to include concrete deck-on-prestressed concrete girder structures. These types of structures comprise a large portion of Illinois’ inventory. Illinois Department of Transportation engineers continue to build on the studies described in the paper such that policies and procedures for other types of typical bridges can be formulated.  相似文献   

9.
The sandwich plate system (SPS) is a relatively new bridge deck system that consists of steel face plates bonded to a rigid polyurethane core. The decks are thin, lightweight, and modular in design and can be tailored to numerous applications. This system provides an excellent alternative for the rapid construction and rehabilitation of bridge decks. With any new system, there exists some uncertainty in the design procedures as a result of the limited population for comparison. This paper presents the results of a finite-element parametric investigation of the lateral load distribution characteristics of SPS bridges. The parametric study primarily focuses on the influence of deck thickness on distribution behavior as compared to conventional reinforced concrete decks. Results from the study demonstrate that the inherent flexibility of a thin SPS deck yields larger distribution factors (up to 20%) than a typical reinforced concrete deck, but these distribution factors can still be conservatively estimated with current AASHTO LRFD methods. Additional comparisons indicate that the distribution behavior of SPS bridges can also be estimated with the equations proposed by the NCHRP 12-62 project.  相似文献   

10.
The MD 24 Bridge over Deer Creek in Harford County, Md., was one of the projects chosen by the Federal Highway Administration’s Innovative Bridge Research and Construction Program for bridge deck replacement by fiber-reinforced polymer (FRP) composites. A thorough discussion is presented on Maryland State Highway Administration’s first bridge rehabilitation project utilizing a FRP deck. The discussion includes design details, installation procedure, construction methods and in situ load testing with a wireless monitoring system. The research team installed a monitoring system to record the effects of live loads on the bridge system, including truss members, steel stringers, and plate action of the FRP deck. Finite-element models were also used in this phase. Dynamic effects of the FRP system, composite action between steel stringers and the FRP deck as well as the effective width and distribution factors of stringers were obtained and compared with the AASHTO specifications. Recommendations are also offered on improving the design details based on this experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号