首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Mg2-xNdxNi (x =0.05, 0.1, 0.2, 0.3) alloys and Mg1.95RE0.05Ni (RE= La, Ce, Pr, Nd, Y)ternary alloys were prepared by ball milling of mixted powder of Mg, Ni, RE and sintering under the protection of argon. XRD analysis shows that Mg2-xNdxNi (x = 0.05, 0.1 ) and Mg1.95RE0.05Ni consist of single phase with the same crystal structure as Mg2Ni. While three-phase alloys including Mg2Ni, NdNi and NdMgNi4 were formed in Mg1.8Nd0.2Ni and Mg1.7Nd0.3Ni alloys respectively. The lattice constants of Mg2Ni in those ternary alloys were calculated. The decomposition of Mg2Ni occurs in the milling process of Mg2Ni and Mg1.95RE0.05Ni alloys respectively. For the latter, another earlier reaction occurs in milling process, which means that atoms of RE are separated from crystal structure of Mg2Ni and form relevant oxides by combination with oxygen existed in argon atmosphere.  相似文献   

2.
添加钕对Mg2Ni储氢合金的结构和电极性能的影响   总被引:2,自引:1,他引:2  
利用两步法制备了一系列添加Nd的三元Mg2-xNdxNi合金。XRD分析证实,当x=0.05,0.1时,制得的三元Mg2-xNdxNi合金均为Mg2Ni单相合金;三元Mg18Nd0.2Ni(x=0.2,0.3)合金为三相合金,三相分别为Mg2Ni,NdNi,NdMgNi4。模拟电池测试结果表明,同Mg2Ni合金相比,球磨10h的三元Mg1.8Nd0.2Ni合金和Mg17Nd03Ni合金电极的放电容量提高明显,且Mg17Nd03Ni合金电极的循环性能有明显改善。这极有可能与合金中NdMgNi4相的存在以及球磨形成的微结构有关。  相似文献   

3.
通过感应熔炼制备La0.65RE0.10Mg0.25Ni3.55i0.15(RE =La,Ce,Pr,Nd,Sm)合金.采用X射线衍射方法分析了合金的相结构,研究了其电化学性能,并采用电化学阻抗谱分析了合金电极的放氢动力学特性.研究结果表明,合金是以LaNi5、LaNi3为主相的多相结构,同时合金中少量的Si元素与Mg和Ni元素形成了少量的Mg2 Si相和Ni2Si相.Ce,Pr,Nd,Sm部分替代La以后,合金的放电容量下降,Ce的替代使合金容量大幅度降低.对于本系列合金,La被其他稀土元素部分替代后,合金经过100次循环后的容量保持率略有下降,但除了Pr元素以外,变化值均较小.合金电极的电化学阻抗谱分析表明,中低频区的容抗弧半径依次为Ce >La> Nd >Sm >Pr,这表明采用Nd、Sm、Pr替代La后合金电极在碱液中放电过程电荷传递电阻Rct减小,即合金表面活性增加,但Ce替代却导致Ret急剧增大,这可能与Ce在碱液中易形成氧化物降低了合金的表面活性有关.  相似文献   

4.
To improve the hydrogen storage performance of PrMg_(12)-type alloys,Ni was adopted to replace partially Mg in the alloys. The PrMg_(11)Ni+x wt.% Ni( x = 100,200) alloys were prepared via mechanical m illing. The phase structures and m orphology of the experim ental alloys were investigated by X-ray diffraction and transm ission electron microscopy. The results show that increasing milling time and Ni content accelerate the form ation of nanocrystalline and am orphous structure. The gaseous hydrogen storage properties of the experim ental alloys were determ ined by differential scanning calorim etry( DSC) and Sievert apparatus. In addition,increasing milling time makes the hydrogenation rates of the alloys augment firstly and decline subsequently and the dehydrogenation rate always increases. The maximum capacity is 5. 572 wt. % for the x = 100 alloy and 5. 829 wt. % for the x = 200 alloy,respectively. The enthalpy change( ΔH),entropy change( ΔS) and the dehydrogenation activation energy( E_k~(de)) markedly lower with increasing the milling time and the Ni content due to the generation of nanocrystalline and amorphous structure.  相似文献   

5.
As the alloy with the most suitable Ni/(La+ Mg) ratio has higher capacity and good cycle stability,theeffects of Ni/(La+Mg) ratios on the electrochemical performances of the La0.80 Mg0.20 Nix (x= 3.5 to 5.0) alloys have been investigated to find the most suitable Ni/(La+ Mg) ratio.The results of XRD and SEM observations show that the phase composition of the alloys varies with different Ni/(La+Mg) ratios.When Ni/(La+Mg) is notmore than 4.25,all the alloys contain LaNi5 and (La,Mg)2Ni7 phases,in addition,the LaMg and (La,Mg)Ni3 phases exist in the x=3.5 and 3.75 alloys,respectively.The LaMg2Ni9 phase exists in the x=4.25 alloy.There are the LaNi5 and LaMg2 Ni9 phases in the x= 4.5,4.75,and 5.0 alloys.The phase abundance and cell volume change with different Ni content.When the Ni/(La+Mg) ratio is not more than 4.25,the alloys possess excellent activation capability,however,the activation capabilities of the alloys decrease with a further increase in the Ni/(La+Mg)ratio.With increasing the Ni/(La+ Mg) ratio,the maximum discharge capacities,the medium voltages,and the cycle stabilities of the alloys first increase and then decrease.When the Ni/(La+Mg) ratio is 3.75,the corresponding alloyhas the maximum discharge capacity among all the alloys.However,the cycle stability of the Ni/(La+ Mg)= 4.0 alloy is better than that of the others.  相似文献   

6.
采用机械合金化制备Mg(76-x)Ti(12+x)Ni9Cr3(x=4,8,12,16)合金,通过X射线衍射(XRD)、热分析(DSC)、扫描电子显微镜(SEM)和压强-成分-温度(PCT)分析等方法对合金进行分析和表征.结果表明:Mg(76-x)Ti(12+x)Ni9Cr3(x=4,8,12,16)合金相主要由Mg2...  相似文献   

7.
镁系储氢合金有着价格低廉、储氢量大等优点,作为机载储氢材料有着广泛的应用前景,但其过高的氢分解温度,过慢的分解速度等缺点制约着实际应用.采用机械球磨制备出Mg2 Ni-xB(x =0%,1%,5%,10%,15%)系列储氢合金.通过XRD分析了合金的物相结构,采用P-C-T测试仪测定了合金的吸放氢性能,研究了添加不同含量的B对Mg2Ni合金吸放氢性能的影响.研究结果表明,B的添加对合金在200和300℃下吸放氢性能的改善作用不明显,但添加B的合金在400℃下的吸氢量均较Mg2Ni高,B的添加量由1%增至15%的合金吸氢量分别为3.09%,3.00%,2.81%,2.84%,而Mg2Ni的吸氢量则只有2.60%.随着B含量的增加,含B合金吸氢量略有降低;在含B的试样中,含5%B的合金吸氢速率最大,仅需180 s便能完成吸氢.所有含B合金的放氢平台均较Mg2Ni高且较为平坦.本次实验表明,B的添加量对合金性能的提升存在一个最优值,本次实验结果显示,添加5%B相对较好地改善合金的储氢性能,提高合金吸氢量和放氢平台压的同时能保持较快的吸氢速率.  相似文献   

8.
The substituting Mg with Ni and milling as-cast alloy with Ni were adopted to obtain nanocrystalline/amorphous CeMgnNi+x wt.%Ni(x=100,200) alloys and promote the electrochemical hydrogen storage performances of CeMg_(12)-type alloys.Analyzing the structural features of the alloys provided a mechanism for ameliorating the electrochemical hydrogen storage properties.The electrochemical tests demonstrated that all the alloys just needed one cycle to be activated.Rising Ni proportion had an obvious role on charge-discharge reaction.The discharge capacities of the as-milled(60 h) alloys increased sharply from 182.0 mAh/gfor x=100 alloy to 1010.2 mAh/gfor x=200 alloy at current density of 60 mAh/g.Furthermore,milling time largely determined the performances of electrochemical reaction.The discharge capacity continued to grow along with prolonging milling time,while the cycle stability obviously decreased for x=100 alloy,and first declined and then augmented for the x=200 alloy with milling time extending.In addition,there was an optimal value with milling time varying for the high rate discharge abilities(HRD),which was 80.3%for x=100 alloys and 86.73%for x=200,respectively.  相似文献   

9.
The La0.55Pr0.05Nd0.15Mg0.25Ni3.5(Co0.5Al0.5)x(x=0.0, 0.1, 0.3, 0.5) alloys were prepared by magnetic levitation melting under an Ar atmosphere, and the effects of Co and Al on the hydrogen storage and electrochemical properties were systematically investigated by pressure composition isotherms, cyclic voltammetry, Tafel polarization and electrochemical impedance spectroscopy testing. The results showed that the alloy phases were mainly consisted of (La,Pr)(Ni,Co)5, LaMg2Ni9, (La,Nd)2Ni7 and LaNi3 phases, and the cell volumes of (La,Pr)(Ni,Co)5, LaMg2Ni9, (La,Nd)2Ni7 and LaNi3 phases expanded with Co and Al element added. The hydrogen storage capacity initially increased from 1.36 (x=0) to 1.47 wt.% (x=0.3) and then decreased to 1.22 wt.% (x=0.5). The discharge capacity retention and cycle stability of the alloy electrodes were improved with the increase of Co and Al contents. The La0.55Pr0.05Nd0.15Mg0.25Ni3.5(Co0.5Al0.5)0.3 alloy electrode possessed better electrochemical kinetic characteristic.  相似文献   

10.
机械球磨对烧结形成Mg2Ni相的影响   总被引:1,自引:0,他引:1  
本文分析了球磨处理对烧结时Mg2Ni相形成的影响。试验结果表明,球磨处理后的Mg、Ni混合粉晶粒细化,并形成了有利于原子扩散的微结构(如界面密度、晶格缺陷密度增加等),从而使烧结时MgaNi相更易形成。X衍射和DSC分析也证实,烧结形成Mg2Ni相的过程中无中间相的产生,适当的球磨处理会影响Mg2Ni相形成的温度和焓变(△H),可使Mg2Ni相形成在较低温度范围(770K左右)下进行。  相似文献   

11.
为了改善Mg2Ni型合金气态及电化学贮氢动力学性能,用La部分替代合金中的Mg,用快淬技术制备了Mg2-xLaxNi(x=0,0.2,0.4,0.6)合金,用XRD,SEM,HRTEM分析了铸态及快淬态合金的微观结构;用自动控制的Sieverts设备测试了合金的气态贮氢动力学性能,用程控电池测试仪测试了合金的电化学贮氢动力学.结果发现,快淬无La合金具有典型的纳米晶结构,而快淬含La合金显示了以非晶相为主的结构,表明La替代Mg提高Mg2Ni型合金的非晶形成能力.La替代Mg明显地改变Mg2Ni型合金的相组成.当La替代量x=0.4时,合金的主相改变为(La,Mg) Ni3+ LaMg3.合金的气态及电化学吸放氢动力学对La含量及快淬工艺敏感,La替代使合金的吸氢动力学降低,但适量的La替代可以明显改善合金的放氢动力学及高倍率放电能力.适当的快淬处理可以提高合金的气态及电化学贮氢动力学,但获得最佳贮氢动力学的快淬工艺与合金的成分密切相关.  相似文献   

12.
采用电磁感应悬浮炉制备La0.55Pr0.05Nd0.15Mg0.25Ni3.5-xCoxAl0.25(x=0,0.1,0.2,0.3,0.4)系列合金,研究Co含量对合金的相结构、吸放氢性能和电化学性能的影响。研究结果表明,该系列合金主要由LaNi5、Nd2Ni7相组成。当Co含量大于0.2时,合金中出现La2Ni7相。压强-吸氢量-温度(Pressure-Content-Temprature)测试显示在303 K温度下,合金具有良好的吸氢性能,当x=0.4时合金的最大吸氢量为1.29(质量分数,%)。电化学测试表明:随x值变化,合金电极的最大放电容量分别为340.0(x=0.0)、346.6(x=0.1)、370.0(x=0.2)、320.0(x=0.3)和346.6(mA.h)/g(x=0.4);随Co含量增加,合金电极容量保持率不断增加,高倍率放电性能先增加后减小,循环伏安曲线、氢在合金体中的扩散系数D共同反映了合金电极的动力学特性。  相似文献   

13.
Magnesium(Mg)-based alloys have already been widely studied as the hydrogen storage materials because of their high reversible hydrogen storage capacity,low cost,light weight,etc.However,the poor de/hydrogenation kinetic properties dramatically hinder the practical applications.In this work,the MgH_2-ANi_5(A=Ce,Nd,Pr,Sm,and Y) composites were prepared by a high-energy ball milling method.which can effectively refine the particle size thus improving the kinetic properties.Experimental results reveal that the MgH_2-ANi_5 composites mainly consist of Mg_2 NiH_4,MgH_2 and rare earth(RE) hydride,which will be dehydrogenated to form Mg_2 Ni,Mg and stable RE hydride reversibly.Accordingly,the asmilled MgH_2-ANi_5(A=Ce,Nd,Pr,Sm,and Y) composites with various A-elements can respectively contribute to a reversible hydrogen storage capacity of 6.16 wt%,5.7 wt%,6.21 wt%,6.38 wt%,and 6.5 wt%at a temperature of 300℃,and show much better kinetic properties in comparison to the pure MgH_2 without any additive.In-situ formed Mg_2 Ni and stable RE hydride(such as CeH_(2.73) and YH_2) might act as effective catalysts to significantly improve the hydrogen storage properties of MgH_2.The present work provides a guideline on improving the kinetic properties of the Mg-based hydrogen storage alloys.  相似文献   

14.
In order to improve the hydrogenation and dehydrogenation performances of the Mg2Ni-type alloys, Mg was partially substituted by La in the alloy, and melt spinning technology was used for the preparation of the Mg20-xLaxNi10 (x=0, 2, 4, 6) hydrogen storage alloys. The structures of the alloys were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). It was found that no amorphous phase formed in the as-spun La-free alloy, but the as-spun alloys containing La held a major amorphous phase. When La content x≤2, the major phase in the as-cast alloys was Mg2Ni phase, but with further increase of La content, the major phase of the as-cast alloys changed into LaNi5+LaMg3 phase. Thermal stability of the as-spun alloys was studied by differential scanning calorimetry (DSC), showing that spinning rate was a negligible factor on the crystallization temperature of the amor-phous phase. The hydrogen absorption and desorption kinetics of the as-cast and as-spun alloys were measured using an automatically con-trolled Sieverts apparatus, confirming that the hydrogen absorption and desorption capacities and kinetics of the as-cast alloys clearly in-creased with rising La content. For La content x=2, the as-spun alloy displayed optimal hydrogen desorption kinetics at 200 ℃.  相似文献   

15.
为了提高La-Mg-Ni基贮氢合金的荷电保持率,本文研究了La/Nd比的变化对La-Mg-Ni基贮氢合金自放电性能的影响。随着Nd替代La量的增加,(LaxNdy)0.9Mg0.10Ni3.09Mn0.12Co0.60Al0.13(x/y=5,4,3,2,1)合金的荷电保持率先增大后减小,当x/y=4时,其荷电保持率达到最大值80.8%(318 K)。合金电极贮存后,FESEM-EDS和XRD分析表明,合金颗粒表面形成了Mg(OH)2和Nd(OH)3。P-C-T曲线和Tafel极化测试表明,随着Nd含量的增加,金属氢化物的稳定性呈现先增加后降低和腐蚀电流先减小后增大的规律。  相似文献   

16.
机械合金化法制备镁基储氢材料进展   总被引:3,自引:2,他引:1  
李法兵  蒋利军  郑强  詹锋 《稀有金属》2003,27(6):823-826
介绍了近年来机械合金化法在镁基储氢材料制备上的研究进展,讨论了机械合金化制备非晶、纳米晶镁基储氢材料的机制;从合金替代和多元复合的角度对镁基储氢材料的性能进行了论述:机械合金化法可制备出纳米晶、非晶态的镁基储氢材料,无序区和晶界浓度的增加使得氢原子的吸附和扩散更为容易,制备出的材料具有较高的活性和较快的吸放氢速度。低温吸放氢性能的改善尤其显著;最后指出了机械合金化法制备镁基储氢材料需要注意并加以解决的一些问题。  相似文献   

17.
The rare earth based hydrogen storage alloys MmxM1 1 - x ( Ni3.55 Co0.75 Mn0.4 A10.3 ) ( x = 0 ~ 0.5 ) were investigated in this work.Adjusted Ml: Mm ratio to change the content of La,Ce,Pr and Nd in the alloys and then to change the phase structure, the influences of phase structure on the electrochemical properties were analyzed.The results indicate that the main phase of all alloys is LaNi5 with CaCu5 type structure and the crystal lattices constants of LaNi5 are changed with increasing x value, i.e, decreased a-axis, increased c-axis and axis ratio and nonlinear decreased crystal volume.The crystal volume of the alloy with x = 0.3 is larger than others.There is second phase A1LaNi4 in alloys when x≥0.3, which decrease the discharge capacity, but increase the cycling stability and high rate discharge ability.Compared comprehensively, the alloy with x = 0.3 shows the higher discharge capacity and the better cycling stability.  相似文献   

18.
In order to ameliorate the electrochemical cycle stability of the RE-Mg-Ni based A2B7-type electrode alloys, the Mg content in the alloy was reduced and La in the alloy was partially substituted by Sm. The La0.8-xSmxMg0.2Ni3.15Co0.2Al0.1Si0.05 (x=0, 0.1, 0.2, 0.3, 0.4) elec-trode alloys were fabricated by casting and annealing. The microstructures of the as-cast and annealed alloys were characterized by XRD and SEM. The electrochemical hydrogen storage characteristics of the as-cast and annealed alloys were measured. The results revealed that all of the experimental alloys mainly consisted of two phases: (La,Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure. As Sm content grew from 0 to 0.4, the discharge capacity and the high rate discharge ability (HRD) first in-creased and then decreased for the as-cast and annealed alloys, whereas the capacity retaining rate (S100) after 100 cycles increased continuously.  相似文献   

19.
The structure, magnetic and magnetocaloric properties of the Ge-rich Gd5Ge2.05-xSi1.95-xMn2x (x=0.01 and 0.03) alloys were investigated by scanning electron microscopy, X-ray powder diffraction, differential scanning calorimeter (DSC) and magnetization measurements. The results of energy dispersive X-ray analysis (EDX) and X-ray diffraction analyses showed that the composition and crystal structure of the alloys were desired. DSC measurements were performed to determine the transformation temperatures for each alloy. Both alloys exhibited the first order phase transition around room temperature. The alloys showed an anti-ferromagnetic transition around 60 K. The isothermal magnetic entropy changes of the alloys were determined from the isothermal magnetization measurements by using the Maxwell relation. The maximum values of isothermal magnetic entropy change of the Gd5Ge2.05-xSi1.95-xMn2x alloy with x=0.01 was found to be -12.1 and -19.8 J/(kg·K) using Maxwell equation around 268 K in applied fields of 2 and 5 T, respectively.  相似文献   

20.
Ferromagnetic shape memory alloys (FSMAs) such as NiMnGa, FePd and FePt are attractive as a new magnetic actuator material. They show a large magnetic-field-induced strain of 3% - 9% due to the variant rearrangement. Recently, the present authors have reported that in the Ni-Ga-Fe alloy the martensitic transformationfrom the B2 and/or the L21 structures into a seven-layer or five-layer modulated structure occurs upon cooling. In this alloy system, however, it is impossible to obtain a martensite phase at RT with a Curie temperature (To) higher than 100℃. In this work, the effects of substitution of Co for Ni on the martensitic and magnetic transformations, crystal structures and phase equilibria in Ni-Ca-Fe alloys were studied. Ni-Ga-Fe-Co alloys were prepared by induction melting under an argon atmosphere. Small pieces of specimens were taken from the ingot and homogenized at 1433 K for 24 h followed by quenching in water. The obtained specimens were aged at 773 K for 24 h and then quenched. The compositions of each phase were determined by energy dispersion X-ray spectroscopy (El)X). The martensitic transformation temperatures and Tc were measured by differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. The crystal structure of martensite phase was observed by X-ray diffractmeter (XRD) and transmission electron microscope (TEM). The Curie temperature Tc was increased with increasing Co content while the martensitic transformation temperature slightly decreased. In the Ni(54-x) Ga27 Fe19 Cox, Tc increases from 303 K to 408 K with increasing CO content from x=0 to x=6. The crystal structure of the martensite phase and the phase equiribria in the Ni-Fe-Ga-Co alloys will be also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号