首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
采用空气助燃超音速火焰喷涂 HVAF(High Velocity Air Fuel) 在 304 不锈钢基材上制备三种粉末粒径不同 WC-10Co-4Cr 涂层。 利用光学显微镜 (OM)、 X 射线衍射仪 (XRD)、 扫描电子显微镜 (SEM)、 维氏显微硬度仪、 万能拉伸试验机、 抗冲蚀试验机对涂层的孔隙率、 微观形貌、 力学性能、 断裂韧性以及气体喷砂冲蚀性能进行研 究分析。 结果表明, HVAF 喷涂的 WC-10Co-4Cr 涂层孔隙率低, 硬度与结合强度高、 断裂韧性好, 涂层抗冲蚀 性能优异。 WC-10Co-4Cr 涂层在 30° 冲蚀角下, 涂层的气体喷砂冲蚀磨损主要为微切削产生的犁沟。 在 90° 冲蚀 角度下, 涂层的气体喷砂冲蚀磨损主要表现为疲劳剥落特征  相似文献   

2.
为了提高结晶器铜板的抗磨损能力,采用空气助燃超音速火焰喷涂法(HVAF)在铜板表面喷涂WC-Cr_3C_2-Ni硬质合金涂层.性能测试结果表明,使用HVAF法制备的WC-Cr_3C_2-Ni涂层脱碳较轻,孔隙率低;具有高硬度、高耐磨性的力学性能,涂层平均显微硬度能够达到1 337HV_(0.3);涂层热稳定性较好,平均导热系数为292.11 W/(m·K).与目前使用的WC-17Co涂层相比,综合性能更佳.现场生产试验结果证实,WC-Cr_3C_2-Ni涂层的效果优于WC-17Co涂层.  相似文献   

3.
低温超音速火焰喷涂纳米WC-10Co4Cr涂层的显微结构和性能   总被引:1,自引:0,他引:1  
以纳米和微米WC-10Co4Cr粉末为热喷涂粉末,采用低温超音速火焰喷涂(LT-HVOF)和超音速火焰喷涂(HVOF)技术制备了WC-10Co4Cr涂层,采用SEM、XRD、和显微硬度仪等对LT-HVOF WC涂层显微结构和性能进行了表征.结果表明:n-WC涂层、lm-WC涂层的显微结构与普通超音速火焰喷涂WC涂层没有明显的区别,其主晶相为WC; m-WC涂层呈明显的层状结构,涂层中WC颗粒尖端发生了钝化和部分熔化,粒径变小,并形成了WC/的核壳结构;其主晶相为.n-WC涂层显微硬度较lm-WC涂层低,但其韧度高而使涂层的磨损失重最低;m-WC涂层的显微硬度和韧度最低,磨损失重最大.  相似文献   

4.
为进一步提升高质量WC涂层的耐磨性、耐海水腐蚀性和耐海水气蚀性。采用大气超音速火焰喷涂(HVAF)在0Cr13Ni5Mo基体上制备稀土La2O3改性WC-20Cr3C2-11NiMo涂层。通过显微硬度测试、平面孔隙测试、摩擦磨损实验、电化学实验和模拟海水超声波气蚀实验,测试涂层的显微硬度、孔隙率、摩擦因数、摩擦磨损性能、耐海水腐蚀性能和耐海水气蚀性能,分析La2O3对WC-20Cr3C2-11NiMo涂层耐磨耐蚀性能的影响。结果表明,改性后的涂层显微硬度提升到1400 HV0.2左右,平均孔隙率降低约48.6%;涂层磨损质量降低约33%,摩擦因数降低约30%,摩擦磨损表面微凹坑和微裂纹明显减少;电化学自腐蚀电位明显右移,电化学自腐蚀电流密度明显减小;涂层的气蚀质量损失减少约20%,气蚀坑洞明显减少和变小。HVAF喷涂La2O3改性后的WC-20Cr3C2-11NiMo涂层硬度略微提升,致密性、耐磨性、耐海水腐蚀性和耐海水气蚀性得到明显提升,除表面疲劳磨损外,表面摩擦磨损机理从严重磨粒磨损转变为轻微磨粒磨损,气蚀机理主要为流体冲击波侵蚀。  相似文献   

5.
为增强30CrMnSiA钢的耐磨与防腐性能,采用超音速火焰喷涂制备WC-10Co4Cr防护涂层,并与传统硬铬镀层进行性能对比。扫描电镜观察显示,WC-10Co4Cr涂层孔隙率低,结构均匀致密。显微硬度与摩擦磨损测试表明,WC-10Co4Cr涂层较硬铬镀层硬度提高了1.4倍,耐磨性提高4倍以上;耐蚀性测试表明,WC-10...  相似文献   

6.
采用超音速火焰(HVOF)喷涂工艺在316L不锈钢基体上制备了WC-12Co涂层,测试了涂层的结合强度、显微硬度、气孔率以及抗磨粒磨损性能。并利用XRD对喷涂粉末及涂层进行了相结构分析,用扫描电子显微镜对喷涂粉末、磨粒磨损前后的涂层表面形貌进行了观察。结果表明:在喷涂过程中,仅有很少量的WC粒子发生氧化脱碳。涂层的结合强度和显微硬度高,组织结构致密。在相同的实验条件下,316L的磨粒磨损量是WC-12Co涂层的95倍,这表明HVOF制备的WC-12Co涂层具有优异的抗磨粒磨损性能。  相似文献   

7.
超音速火焰喷涂WC-12Co涂层抗磨粒磨损性能研究   总被引:3,自引:0,他引:3  
采用超音速火焰(HVOF)喷涂工艺在316L不锈钢基体上制备了WC-12Co涂层,测试了涂层的结合强度、显微硬度、气孔率以及抗磨粒磨损性能。并利用XRD对喷涂粉末及涂层进行了相结构分析,用扫描电子显微镜对喷涂粉末、磨粒磨损前后的涂层表面形貌进行了观察。结果表明:在喷涂过程中,仅有很少量的WC粒子发生氧化脱碳。涂层的结合强度和显微硬度高,组织结构致密。在相同的实验条件下,316L的磨粒磨损量是WC-12Co涂层的95倍,这表明HVOF制备的WC-12Co涂层具有优异的抗磨粒磨损性能。  相似文献   

8.
采用超细碳化钨和草酸钴为原料通过喷雾干燥造粒、氮气保护烧结、氢气还原等工艺得到WC-12Co超细热喷涂粉末材料.通过超音速火焰喷涂(HVOF)制备超细WC-12Co耐磨涂层.通过扫描电子显微镜对制备的WC-12Co超细热喷涂粉末材料及超细结构耐磨涂层的微观组织结构进行分析.对制备的超细结构耐磨涂层的结合强度、硬度进行表征.结果表明制备的WC-12Co超细热喷涂粉末材料适合于超音速火焰喷涂制备超细WC-12Co耐磨涂层,制备的超细WC-12Co耐磨涂层性能优异.  相似文献   

9.
采用氧-丙烷超音速火焰喷涂技术在ZG06Cr13Ni5Mo不锈钢基材表面制备了纳米WC-10Co4Cr涂层,研究了工艺参数对涂层组织及性能的影响。利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分别表征了涂层的物相成分和微观组织,采用维氏硬度计和金相分析仪分别测定了涂层显微硬度和孔隙率。在料浆冲蚀条件下测试了涂层的抗泥沙冲蚀磨损性能,并分析了纳米WC-10Co4Cr涂层的冲蚀磨损机制。结果表明:不同工艺条件下制备的纳米WC-10Co4Cr涂层的主要物相为WC、W_2C和非晶态CoCr,物相含量受丙烷流量的影响较大。涂层主要由多尺度的微米-纳米WC硬质颗粒和CoCr合金粘结相组成,同时含有一定的微观孔洞、缝隙等缺陷。涂层孔隙率随丙烷流量和喷涂角度的增大而降低,而随送粉速率和喷涂距离的增大先降低后提高;涂层的显微硬度随丙烷流量、送粉速率和喷涂距离的增大先提高后降低,而随喷涂角度的增大而提高。最佳喷涂工艺条件为:丙烷流量68 L/min,送粉速率45~55 g/min,喷涂距离250 mm,喷涂角度90°。纳米WC-10Co4Cr涂层抗泥沙冲蚀性能最大可达不锈钢基材的14.26倍,冲蚀磨损机制主要为交变应力下的疲劳剥落。  相似文献   

10.
采用超音速火焰喷涂(HVOF)技术,以喷雾转换法制备的超细晶WC-12Co复合粉末为热喷涂粉末原料,在45#钢基体上制备WC-12Co涂层,并测试涂层的显微硬度、开裂韧性及抗磨粒磨损性能,利用XRD对复合粉末及涂层进行相结构分析,用SEM对复合粉末及涂层截面进行显微观察。结果表明,在喷涂过程中,多孔空壳球形复合粉末中WC颗粒有明显的脱碳分解发生,涂层中含有W2C、Co2W4C、W和非晶相;涂层组织呈典型的层状结构,WC晶粒有圆润化和长大现象;涂层显微硬度HV0.3/10平均值为1 084、开裂韧性平均值为5.24 MPa·m1/2,涂层表面抗磨损性能随粗糙度降低和硬度增加而提高,平均磨损质量损失为0.783mg/min。  相似文献   

11.
为改善农业机械工作部件的耐磨性和耐腐蚀性能,提高其使用寿命,采用超音速火焰喷涂的技术,在45 # 钢表面制备WC-10Co-4Cr/Ni60 涂层。在Ni60 粉末中分别添加质量分数为0、10 %、20 % 和30 % 的WC-10Co- 4Cr 粉末,探究WC-10Co-4Cr 含量对WC-10Co-4Cr/Ni60 涂层性能的影响。结果表明,制备的WC-10Co-4Cr/ Ni60 涂层组织均匀致密,涂层主要由γ ( NiCr ) 相和WC 相组成,含有少量的W2C、Ni3Fe 和Cr3Si 相,没有明显 的氧化脱碳现象。30 %WC-10Co-4Cr/Ni60 涂层的硬度达到9.35 GPa,是Ni60 涂层的1.23 倍,该涂层的耐磨性能最好, 在摩擦115 m 后,单位面积的总磨损量47.2 mg/cm2,比Ni60 涂层减少了35.3 %。20 %WC-10Co-4Cr/Ni60 涂层 的断裂韧性最高为6.04 MPa·m1/2,相较于Ni60 涂层提高了24.3 %,此外,该涂层在酸性环境中的耐腐蚀性能均 最佳。  相似文献   

12.
采用激光熔覆技术制备了Ni60B镍基合金涂层以及微米WC、纳米WC和微-纳米WC颗粒增强的Ni60B基复合涂层(分别称为WCm、WCn和WCmn复合涂层).对制备涂层在Amsler200磨损试验机上进行了不同载荷和滑动距离的水润滑滑动磨损试验.结果表明:WC颗粒的加入显著提高了Ni60B涂层的耐磨性.WCm复合涂层和纳米WCn复合涂层的耐磨性差别不大,但磨损形貌不同.涂层在水润滑环境下的磨损量均远远低于干滑动摩擦,其原因是水膜的支撑或隔离作用降低了涂层与磨轮之间的接触应力,水的冷却作用减少了摩擦热引起的温度升高,降低了涂层摩擦表面的温升和热软化.水润滑摩损条件下,WCm和WCn复合涂层中过饱和W元素发生扩散和聚集.   相似文献   

13.
WC陶瓷涂层以其较高的硬度和优良的耐磨性能而被广泛的应用于各种耐磨保护涂层。文章综述了热喷涂WC-10Co4Cr涂层的主要制备方法及工艺现状;指出了其中最为适合制备WC-10Co4Cr粉末和涂层的技术方法,并总结了近年来热喷涂技术特别是超音速火焰喷涂技术制备WC-10Co4Cr涂层的主要研究进展;同时,通过对影响涂层组织和性能的主要因素和影响机理的分析,对热喷涂WC-10Co4Cr陶瓷涂层的研究趋势进行了展望,提出值得关注稀土元素对WC-10Co4Cr涂层的改性作用。  相似文献   

14.
The study of near-nanocrystalline cermet composite coating was performed by depositing near-nanocrystalline WC-17Co powder using the high velocity oxy-fuel spraying technique. The WC-17Co powder consists of a core with an engineered near-nano-scale WC dispersion with a mean grain size 427 nm. The powder particle contains 6 wt pct of the ductile phase Co matrix mixed into the core to ensure that the reinforcing ceramic phase WC material is discontinuous to limit debridement during wear, while the remainder of the binding phase (11 wt pct) is applied as a coating on the powder particle to improve the ductility. The tribological properties of the coating, in terms of corrosion resistance, microhardness, and sliding abrasive wear, were studied and compared with those of an industrially standard microcrystalline WC-10Co-4Cr coating with a WC mean grain size 3 μm. Results indicated that the WC-17Co coating had superior wear and corrosion resistance compared to the WC-10Co-4Cr coating. The engineered WC-17Co powder with a duplex Co layer had prevented significant decarburization of the WC dispersion in the coating, thereby reducing the intersplat microporosity necessary for initiating microgalvanic cells. The improved wear resistance was attributed to the higher hardness value of the near-nanocrystalline WC-17Co coating.  相似文献   

15.
采用氧乙炔火焰喷熔工艺制备了Ni60CuMo和纳米WC增强Ni60CuMo两种Ni基合金喷熔层,采用XRD、SEM方法分析了喷熔层的组织结构,测量了喷熔层的硬度和电化学性能;研究了两种喷熔层在淡水和3.5wt.%NaCl介质中的抗泥浆冲蚀磨损性能。结果表明,纳米WC增强Ni60CuMo合金喷熔层的组织结构为纳米WC呈块状均匀镶嵌在γ相固溶体和Cr23C6、Cr7C3等硬质相之间,形成弥散强化,使其硬度提高了约13%;纳米WC增强的Ni基合金喷熔层在3.5wt.%NaCl介质中比Ni60CuMo喷熔层具有更低的腐蚀电位与更高的腐蚀电流密度,它在淡水和3.5wt.%NaCl介质中的抗泥浆冲蚀磨损性能分别比Ni60CuMo喷熔层提高了约53%和20%。纳米WC的加入显著提高了Ni基合金喷熔层的抗泥浆冲蚀性能,但在3.5wt.%NaCl介质中,由于WC与NiCr合金之间形成了大量微电池,加速了喷熔层的腐蚀磨损,使其抗泥浆冲蚀性能的增强效果受到削弱。  相似文献   

16.
In this investigation, aluminum alloy is coated with WC–Ni layer deposited by detonation spraying and high velocity oxy fuel (HVOF) spraying. The important features of microstructure and hardness of the coating are characterized extensively. The wear rates of the coating due to abrasion are determined for different applied loads. The worn coatings are examined under scanning electron microscopy. A correlation is established between the wear rates of the coatings due to abrasion and hardness. The results show that abrasion action takes place by both particle rolling and particle sliding. Fracture of particles during abrasion increases wear rate. In general, the wear rate due to abrasion is higher for the coating deposited by detonation spraying than that of coating deposited by HVOF spraying.  相似文献   

17.
对比研究超细和常规粒度 WC-10Co4Cr 粉末喷涂制备涂层的性能,根据显微形貌、力学性能与电化学特 性比较两种涂层的耐腐蚀性并分析机理。在 304 不锈钢基体上,利用空气助燃高速 (High Velocity Air Fuel, HVAF) 热喷涂技术制备 WC-10Co-4Cr 涂层。采用 SEM 和 XRD 分析了涂层的物相组成和显微形貌,采用维氏硬度仪和 万能拉伸试验机分别测试了涂层的显微硬度与结合强度以表征力学性能,在质量分数为 3.5% 的 NaCl 溶液中对 涂层进行电化学分析。结果表明:两种 WC-10Co-4Cr 粉末涂层均具有优异的耐腐蚀性能,超细粉末涂层自腐蚀 电位 (-0.199 V) 高于常规粉末粒径涂层 (-0.267 V);超细粉末粒径涂层腐蚀电流密度 (1.996×10-7 A/cm2 ) 小于常规 粉末粒径涂层 (3.123×10-6 A/cm2 ),对基体能起到良好的保护作用。超细粉末与常规粉末 WC-10Co-4Cr 涂层电位 腐蚀的机理主要是 WC 与粘结相的电偶腐蚀、Cl - 对涂层表面钝化膜的破坏引起的孔蚀,腐蚀机理基本一致,主 要差异在于,超细粉末涂层的致密度更高,组织更加均匀提高了涂层的耐腐蚀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号