首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
童震松  沈卓身  邢奕 《工程科学学报》2014,36(10):1341-1347
为满足现代电子工业日益增长的散热需求,急需研究和开发新型高导热陶瓷(玻璃)基复合材料,而改善复合材料中增强相与基体的界面结合状况是提高复合材料热导率的重要途径.本文在对金刚石和镀Cr金刚石进行镀Cu和控制氧化的基础上,利用放电等离子烧结方法制备了不同的金刚石增强玻璃基复合材料,并观察了其微观形貌和界面结合状况,测定了复合材料的热导率.实验结果表明:复合材料中金刚石颗粒均匀分布于玻璃基体中,Cu/金刚石界面和Cr/Cu界面分别是两种复合材料中结合最弱的界面;复合材料的热导率随着金刚石体积分数的增加而增加;金刚石/玻璃复合材料的热导率随着镀Cu层厚度的增加而降低,由于镀Cr层实现了与金刚石的化学结合以及Cr在Cu层中的扩散,镀Cr金刚石/玻璃复合材料的热导率随着镀Cu层厚度的增加而增加.当金刚石粒径为100μm、体积分数为70%及镀Cu层厚度为约1.59μm时,复合材料的热导率最高达到约91.0 W·m-1·K-1.   相似文献   

2.
Cr元素对Diamond/Cu复合材料界面结构及热导性能的影响   总被引:3,自引:1,他引:2  
采用预制件制备,压力浸渗金属工艺制备Diamond/Cu复合材料,分析了Cu基体合金化及金刚石颗粒表面金属化情况下,Cr元素对复合材料界面结构和热性能的影响。结果表明,Diamond/Cu-Cr复合材料中金刚石与Cu-Cr合金界面结合良好,Cr元素在界面处发生富集并与金刚石反应生成Cr3C2,其界面结构为金刚石-Cr3C2-富Cr的Cu-Cr合金层-Cu-Cr基体,复合材料的热导率达到520W.m-.1K-1;Diamond-Cr/Cu复合材料中金刚石表面金属化Cr层在熔渗过程中与Cu互扩散,促进界面结合,形成金刚石-Cr3C2层-纯Cr层-Cu-Cr互扩散层-Cu的界面结构。与Diamond/Cu-Cr复合材料相比界面处增加了Cr层,材料的热导率仅为279W.m-1.K-1,但均高于Diamond/Cu复合材料的热导率。  相似文献   

3.
高热导率低热膨胀系数Cu-ZrW_2O_8复合材料的制备与性能   总被引:1,自引:0,他引:1  
以负热膨胀材料ZrW2O8与金属Cu为原料,分别采用常规烧结法和热压法制备具有高热导率低膨胀系数的新型Cu基复合材料Cu-ZrW2O8,研究ZrW2O8体积分数与烧结方法对该复合材料致密度、热导率及热膨胀系数的影响.结果表明:热压法制备的Cu-50%ZrW2O8复合材料的热导率达173.3 W/(m·K),致密度为91.6%,均明显高于常规烧结样品;热压样品的热膨胀系数为11.2×10-6K-1,稍高于常规烧结样品:在150~300℃温度范围内热处理后该样品的平均热膨胀系数降低到10.87×10 -6K-1,较纯Cu的平均热膨胀系数17×10-6K-1低很多,有望成为一种新型的电子封装材料.  相似文献   

4.
采用盐浴镀对金刚石颗粒进行表面镀Cr,通过真空热压制备Ag/金刚石复合材料,主要探讨了金刚石颗粒镀层对复合材料热导率和热膨胀系数的影响。结果表明,金刚石表面的Cr镀层明显改善了金刚石颗粒与Ag基体的界面结合,不仅降低了界面热阻,而且增强了金刚石颗粒对Ag基体膨胀的抑制作用。理论模型分析表明,未镀Cr金刚石复合材料热导率和热膨胀系数的试验值低于和高于理论值,而镀Cr金刚石复合材料热导率的试验值接近于DEM模型预测值,线膨胀系数(CTE)的试验值接近于Kerner模型预测值。  相似文献   

5.
采用压力浸渗和超高压熔渗法制备不同界面状态的金刚石/铜复合材料,分析界面状态对热学性能的影响,重点研究在-65~125℃和-196~85℃两种热冲击载荷下,循环100周次后材料的热导率和热膨胀系数的变化规律。结果表明:通过添加Cr元素的Dia/CuCr和使用超高压制备的EHV-Dia/Cu,材料的界面状态得到了改善;界面强度的提高,有利于获得高热导率,低热膨胀系数的复合材料。Dia/Cu的热导率仅有459.1 W·m-1·K-1,而EHV-Dia/Cu高达678.2 W·m-1·K-1,Dia/CuCr则为529.7 W·m-1·K-1。-55~125℃的热冲击条件下,Dia/Cu,Dia/CuCr,EHV-Dia/Cu的热导率保持良好的稳定性,变化在2.5%以内。而在-196~85℃的热冲击条件下,Dia/Cu由于界面结合力弱,在热应力的作用下热导率急剧下降;Dia/CuCr和EHV-Dia/Cu则表现出了良好的抗热冲击能力,循环后热导率仅下降3%左右。Dia/Cu和Dia/CuCr的初始热膨胀系数分别为8.45×10-6K-1和6.93×10-6K-1,Cr元素的添加使得界面结合强度提高,低膨胀系数的金刚石对高膨胀系数的基体约束力增加,使得热膨胀系数明显下降。在两种热冲击实验条件下,Dia/Cu的热膨胀系数基本保持不变,Dia/CuCr分别上升6.64%和7.22%。  相似文献   

6.
采用金属有机化学气相沉积工艺在碳纳米管(CNTs)表面包覆了W金属层。采用磁力搅拌和放电等离子体烧结工艺制备了镀钨碳纳米管(W-CNTs)与CNTs增强的铝基复合材料。组织观察结果表明钨金属层有效的加强了CNTs与Al基体的界面结合。随着W-CNTs含量增加,W-CNTs/Al复合材料的热导率先增加后降低,且当W-CNTs含量体积分数为1.5%时,复合材料获得最大热导率;W-CNTs/Al复合材料的热导率高于CNTs/Al复合材料。热膨胀系数结果表明随CNTs含量增加,复合材料热膨胀系数降低,且W-CNTs/Al热膨胀系数低于CNTs/Al复合材料。  相似文献   

7.
热压法制备Si-Al电子封装材料及其性能   总被引:5,自引:0,他引:5  
采用真空热压烧结方法 ,制备了性能优异的Si Al电子封装材料。其热导率高于 110W·m- 1 ·K- 1 ,热膨胀系数从 5~ 10 μm·K- 1 可调控 ,密度低于 2 .5g·cm- 3。真空热压方法通过外界压力来克服非润湿状态下的毛细阻力 ,达到硅颗粒均匀分布 ,铝相呈连续网络状包裹的理想复合形貌组织。在铝熔点以上温度点进行的液相烧结均满足封装性能要求 ,且热压时间短、压力低。实验结果表明 :热膨胀系数主要由硅含量确定 ,一定的临界压力值则是影响材料组织及性能的关键参数  相似文献   

8.
近年来,随着电子设备散热需求的增加,金刚石/铝复合材料作为新一代导热金属基复合材料逐渐进入人们的视野。热膨胀性能是衡量电子封装材料与半导体材料匹配性的重要指标。采用高压浸渗法,在120目的粗颗粒金刚石中添加细颗粒提高金刚石的体积比,探究双颗粒金刚石对金刚石/铝复合材料热膨胀性能的影响。结果发现:双颗粒金刚石/铝复合材料具有更高的金刚石体积比,添加的细颗粒越小,热膨胀系数越低,低至6.885×10^(-6)K^(-1),更接近半导体材料的热膨胀系数;细颗粒金刚石的添加不仅提高了金刚石的体积比,同时也增加了复合材料的界面数量,增多了界面热阻,影响铝基体与金刚石之间的热量传导。  相似文献   

9.
电子封装用金刚石/铜复合材料中金刚石颗粒与基体纯铜的界面不润湿,界面结合状态差。通过引入碳化物形成元素Cr,Ti,B等来改善两者界面结合状态,结果表明在铜基体中加入碳化物形成元素制备的复合材料比涂覆碳化物形成元素后金刚石颗粒制备的复合材料界面结合紧密,热导率高。而另一种改善界面结合状态的方法是在此基础上增大金刚石与基体之间接触面积。对比品级差异较大的破碎料金刚石与六八面体金刚石制备的复合材料的热导率性能发现,破碎料金刚石表面积的增大有利于更充分的发挥金刚石的导热性能,且原材料成本大大降低,此类材料也将有一定的应用空间;而针对细颗粒金刚石通过表面腐蚀方法来增大表面积,预计制备的复合材料热导率也会有不同程度地提高。  相似文献   

10.
利用真空热压熔渗技术制备金刚石/Cu复合材料。研究熔渗工艺、金刚石表面镀覆条件等对制备出的金刚石/Cu复合材料的热物理性能的影响。通过理论分析和试验数据可以发现:利用熔渗工艺制备出的金刚石/Cu复合材料中增强体金刚石的石墨化程度非常低,对复合材料的热性能影响很小;提高复合材料的致密度以及降低复合材料的界面热阻是提高复合材料热导率的主要方法,通过改变工艺参数和在金刚石表面镀覆金属层等方法可以提高复合材料的致密度并降低材料的界面热阻;采用180~210μm粒径镀Cr金刚石制备的金刚石体积分数为60%、相对密度为99.1%的复合材料热导率达到462 W·m-1·K-1。  相似文献   

11.
为探索新型热沉用散热材料,采用高温高压方法烧结制备了金刚石/硅复合材料,并研究了金刚石大小粒度混粉、金刚石含量、渗硅工艺以及金刚石表面镀钛对复合材料的致密度和导热性能的影响.结果表明:在大粒度金刚石粉中掺入小粒度金刚石粉、渗硅和金刚石表面镀钛处理都可提高金刚石/硅复合材料的致密度和热导率;随着金刚石含量增大,复合材料热导率提高;其中75/63μm镀钛金刚石颗粒与40/7μm金刚石颗粒的混粉,当混粉质量分数为95%时,在4~5GPa、1400℃高温高压渗硅烧结,金刚石/硅复合材料的热导率可高达468.3W.m-1.K-1.  相似文献   

12.
采用伪半固态触变成形工艺制备了40%、56%和63%三种不同SiC体积分数颗粒增强Al基电子封装材料,并借助光学显微镜和扫描电镜分析了材料中Al和SiC的形态分布及其断口形貌,测定了材料的密度、致密度、热导率、热膨胀系数、抗压强度和抗弯强度.结果表明,通过伪半固态触变成形工艺可制备出的不同SiC体积分数Al基电子封装材料,其致密度高,热膨胀系数可控,材料中Al基体相互连接构成网状,SiC颗粒均匀镶嵌分布于Al基体中.随着SiC颗粒体积分数的增加,电子封装材料密度和室温下的热导率稍有增加,热膨胀系数逐渐减小,室温下的抗压强度和抗弯强度逐渐增加.SiC/Al电子封装材料的断裂方式为SiC的脆性断裂,同时伴随着Al基体的韧性断裂.   相似文献   

13.
为制备出能满足使用要求的高硅铝合金电子封装材料,采用高能球磨对Al-Si合金粉末进行氧化预处理,结合包套热挤压制备了Al2O3与SiO2增强的弥散强化型铝硅复合材料.采用透射电镜、金相显微镜及热物性测试仪,对材料显微组织、密度、气密性、热膨胀系数及热导率进行了分析.试验结果表明:随着球料比增加,材料内部组织不断细化;Al-Si合金粉末经24 h球磨及挤压后,所制备材料的致密度均大于99%,气密性均达到了10-9数量级;材料在100℃的热膨胀系数均低于13×10-6K-1;热导率均在120W/(m·K)以上,当球料比为10 ∶1时,材料热导率达到最大值142W/(m·K).  相似文献   

14.
放电等离子烧结法制备金刚石/Cu复合材料   总被引:1,自引:1,他引:0  
通过真空镀铬对金刚石颗粒进行表面改性,采用放电等离子烧结法(SPS)制备改性金刚石/Cu复合材料;研究金刚石的体积分数、工艺参数以及金刚石颗粒表面改性对复合材料导热性能的影响。结果表明,烧结温度、混料时间以及金刚石颗粒的体积分数都会影响材料的致密度,金刚石颗粒的体积分数还会影响材料的界面热阻,而致密度和界面热阻是影响该复合材料导热性能的2个重要因素;对金刚石颗粒进行真空镀铬表面改性,可改善颗粒与铜基体的润湿性,降低界面热阻。在一定的工艺条件下,镀铬金刚石体积分数为60%时,改性金刚石/Cu复合材料具有很高的致密度,其热导率达到503.9W/(m.K),与未改性的金刚石/Cu复合材料相比,热导率提高近2倍,适合做为高导热电子封装材料。  相似文献   

15.
采用超高压熔渗法制备了Diamond/SiC/Cu复合材料,通过研究不同SiC含量下样品的热导率变化规律及界面性能,提出孤立界面模型。主要阐释孤立界面模型的适用条件、主要内容及定量公式。通过孤立界面模型,说明低SiC掺杂量的必要性和Diamond骨架对于复合材料导热性能的重要性。结果表明,SiC最佳掺杂量为15%,此时复合材料的综合性能最优:热导率526.7 W·m-1·K-1,热膨胀系数2.4 ppm/K,密度3.74 g/cm3,节省原料成本近15%。  相似文献   

16.
高体积分数SiC/Cu复合材料的研究进展   总被引:3,自引:0,他引:3  
高体积分数SiC/Cu复合材料具有热导率高、热膨胀系数低、耐磨性优异及可焊性好等优点,在电子封装及摩擦磨损领域有很大的应用潜力.本文综合评述了SiC/Cu复合材料的制备技术,详细阐述了SiC-Cu的润湿性、界面反应及活性润湿的机理,指出了SiC/Cu复合材料的发展方向和应用前景.  相似文献   

17.
利用有限元分析软件ANSYS,对表面镀钨金刚石/铜复合材料进行了数值模拟,研究了金刚石体积分数、金刚石粒径及镀层厚度对表面镀钨金刚石/铜复合材料导热系数和热膨胀系数的影响。结果表明:随着金刚石体积分数的增加、金刚石粒径的增大、镀层厚度的减小,复合材料的导热系数呈现出增加的趋势,与文献数据的变化趋势相符,热膨胀系数受金刚石体积分数影响最大,金刚石粒径选在150~200 μm较为合适。  相似文献   

18.
采用熔渗法制备金刚石/Cu复合材料,研究了采用15μm和50μm金刚石颗粒进行组合,体积分数为60%时基体中添加Co对复合材料的致密度、导热率、热膨胀系数及抗弯强度的影响。结果表明,随着Cu中Co含量的增加,复合材料达到熔渗致密时的温度也逐渐增加。采用同一合金成分,过高的熔渗温度会造成复合材料致密度的降低;当Cu中Co含量为2%时,复合材料的导热率提高了57%,达到347 W/(m·K),Co含量超过2%后复合材料的导热率开始降低;而Co含量的增加对降低复合材料的热膨胀系数、提高抗弯强度是有利的,这主要归因于铜中加入Co后对金刚石与Cu的界面改善作用。  相似文献   

19.
为了开发高导热低成本电子封装材料与器件,采用SPS方法制备了SiC/Cu复合材料,研究了SiC的粒径和体积分数对材料致密度和热导率的影响.结果表明:随着SiC体积分数的减少(从70%到50%),材料致密度逐渐提高;随着SiC粒径从40μm变化到14μm,材料的致密度提高.在材料未达到完全致密的情况下,材料的热导率主要受致密度的影响,SiC粒径的减小和体积分数的适宜降低对材料热导率的提高有利.此外,研究了对SiC进行化学镀铜对复合材料的影响.SiC化学镀铜改善了复合材料两相界面的润湿性,与未镀铜SiC相比,使样品相对密度提高了3%,热扩散系数提高了60%,热导率为167 W/(m·K).  相似文献   

20.
对不同品级和粒度的金刚石进行表面镀膜改性,用熔渗法制备了金刚石/铜复合材料。研究了金刚石品级、粒度与膜厚对复合材料热导率以及热膨胀特性的影响。结果表明:金刚石/铜复合材料的热导率随金刚石粒度增大和品级提高而增大;在其他条件相同的情况下,金刚石表面铬膜厚度为210 nm时复合材料的热导率为787 W/(m·K),当铬膜厚度为150 nm时复合材料的热导率为633 W/(m·K),表明镀铬膜太薄会降低复合材料的热导性能;在30~200℃范围内,金刚石/铜复合材料的热膨胀系数在(3.00~8.00)×10~(-6)K~(-1)之间,且随温度升高而升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号