首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
硅因其具有较高的理论比容量(约为3 579 mAh/g,Li15Si4)而成为最具吸引力的负极材料。为了解决硅材料高达300%的体积膨胀和导电性差等问题,以聚丙烯酸(PAA)、蚕茧提取物丝素蛋白和纳米硅(Si NPs)为原料,通过简单的部分炭化,一步法制备了Si@CAS电极材料,并系统研究了聚丙烯酸(A)/丝素蛋白(S)的比例和炭化温度对Si@CAS复合材料电化学性能的影响。结果表明:当聚丙烯酸与丝素蛋白的质量比为1∶1,炭化温度为450 ℃时,所制备的Si@CAS负极的电化学性能较优,远超Si@CA和Si@CS负极材料的电化学性能。Si@CAS负极材料可在0.5 A/g电流密度下循环200圈后比容量可达1 404.2 mAh/g。同时,该材料展现出了优异的倍率性能,在4 A/g电流密度下比容量仍可达1 452.8 mAh/g。   相似文献   

2.
将Hummers法制备的氧化石墨烯(graphene oxide,GO)与纳米硅粉进行超声复合和高温氢还原,制备锂离子电池用纳米硅/石墨烯(Si/G)复合材料。利用扫描电镜、透射电镜、X射线衍射和Raman光谱分析,对Si/G复合材料的形貌与结构进行分析与表征,并测试其电化学性能。结果表明,通过高温氢还原,氧化石墨烯全部还原为石墨烯,无其它杂质相生成。石墨烯包覆在纳米硅颗粒表面,形成层状复合结构;与纯纳米硅粉相比,Si/G复合材料的电化学性能明显提高,在300 m A/g电流密度下,首次放电比容量为2 915.0(m A·h)/g,首次充电比容量为1 080.5(m A·h)/g,20次循环后比容量稳定在969.6(m A·h)/g,库伦效率为99.8%;而纯纳米硅粉的首次放电比容量和首次充电比容量分别为932.7和349.4(m A·h)/g,20次循环后比容量仅为6.4(m A·h)/g。  相似文献   

3.
具有高能量密度的硅材料是锂离子电池负极的优选材料之一。但是,低电导率和在充放电过程中伴随的巨大体积变化而导致循环过程中容量迅速衰减,阻碍了硅材料商业化。本文以商业化的铝硅合金为硅源,通过冷冻干燥方法将氧化石墨烯(GO)包覆在其表面,制备了微米级的多孔硅(PSi)与GO的复合材料PSi@GO。该复合材料核层多孔硅内部丰富的孔隙提供充足的空间以适应硅的体积变化,外层的氧化石墨烯可以加速离子和电子传输,并再次缓冲硅的体积变化,从而可以有效地改善硅负极的循环稳定性和倍率性能。研究结果表明,电流密度为500mA/g时,PSi@GO-2(PSi与GO质量比为10∶5)复合电极材料循环100次后,比容量仍可达到1 275 mAh/g;在电流密度为4 A/g时,该复合材料也可达到980 mAh/g的高比容量。该PSi@GO-2复合材料显示了优异的倍率性能,具有良好的应用前景。   相似文献   

4.
锂离子电池的性能亟待突破瓶颈,当前商用锂离子电池负极材料选用的碳材料容量较低,本文合成制备了一种Mn掺杂石墨烯负载的Co_(0.9)Mn_(0.1)P/RGO复合材料,该材料用于锂离子电池表现出优异的电化学性能。在100 mA/g电流密度下,首次放电比容量达到1 250 mAh/g,首次充电比容量为795 mAh/g,充放电效率63.6%。在800 mA/g电流密度下,循环500次,放电比容量仍然达到367 mAh/g。  相似文献   

5.
用稻壳做原料,不同浓度的氢氧化钾溶液做活化剂,采用水热法制备钠离子电池硬碳负极材料.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积测试系统(BET)和电池性能测试系统,对其结构、形貌和电化学性能进行表征.研究结果表明,用2 mol/L浓度的氢氧化钾做活化剂制备的多孔碳材料(RHPC-1-2)具有37.633 6 m2/g的高比面积且存在大量的微孔和中孔. RHPC-1-2材料具有高的可逆比容量为285 mAh/g和初始库仑效率为72%. RHPC-1-2材料表现出优异的循环性能,在100 mA/g电流密度下,首次循环放电比容量为204 mAh/g,循环100次后容量仍有200 mAh/g,容量几乎没有衰减. RHPC-1-2材料也表现出优异的倍率性能,在25 mA/g、50 mA/g、100 mA/g、200 mA/g和500 mA/g电流密度下放电比容量分别是265 mAh/g、247 mAh/g、213 mAh/g、170 mAh/g和112 mAh/g,当电流密度又是25 mA/g时,RHPC-1-2材料的放电比容量几乎没有下降.   相似文献   

6.
以Cu_3Si/Si复合物为锂离子电池负极材料,研究Cu_3Si组分对活性物质Si的电化学储锂性能的影响。结果表明,Cu_3Si并无储锂能力,但能够提升活性物质Si的循环和倍率性能。在200mA/g充放电流密度下,负极首次嵌锂比容量为1 345mAh/g,首次库伦效率为88.37%,经过100次循环后,材料的可逆比容量为698.7mAh/g。Cu_3Si/Si负极在200、500、1 000mA/g电流密度下比容量分别为1 346.22、754.33和564.78mAh/g。当电流密度重新回到200mA/g时,可逆比容量仍高达1 030.58mAh/g,体现出了良好的倍率性能。  相似文献   

7.
硅(Si)因拥有高的比容量,资源丰富等优势有望成为下一代高性能锂离子电池负极材料,但其导电性差和循环过程中体积膨胀严重等缺陷限制了其进一步应用。采用喷雾干燥法,以玉米淀粉、纳米硅和NH4VO3作为原料,经碳化与氮化后获得氮化钒/纳米硅/碳复合微球(Si@VN/C)。氮化钒的引入提供了电子/离子快速传输通道,提高了纳米硅的导电率,并使纳米硅保持了良好的结构稳定性。碳层将作为纳米硅颗粒的保护层,避免纳米硅与电解液直接接触,有效缓解纳米硅充放电后的体积膨胀。Si@VN/C展现出良好的循环性能,在0.2 A·g-1电流密度下循环130圈后容量为818 mAh·g-1,在0.5 A·g-1高电流密度下循环300圈后可逆容量仍保持580.5 mAh·g-1。  相似文献   

8.
以氧化亚硅为原料,利用氧化亚硅的歧化反应制备纳米硅颗粒、二氧化硅均匀分散的前驱体,然后利用低残余碳的原位高温固相分解制备得到了多孔结构的硅碳材料,并对材料的表面及微观结构和电化学性能进行了表征。SEM显示材料呈微米级多孔球形分布,该结构可以有效吸收充放电过程中硅的晶格膨胀。XRD和TEM结果表明,氧化亚硅材料在950℃开始发生歧化反应。首次比容量达到了1300.2mAh/g,库伦效率达到了84.5%。硅碳石墨复合材料首次比容量为462.6mAh/g,库伦效率为90.5%,循环50圈后比容量为441.7mAh/g,仍远高于常见石墨负极。  相似文献   

9.
研究了采用静电纺丝法制备NiCo2O4纳米纤维前驱体,并将煅烧后的NiCo2O4纤维用作锂离子电池负极材料,考察了其电化学性能。结果表明:质量比2∶1的Co(NO3)2和Ni(NO3)2经电纺可制备出直径约400 nm的NiCo2O4纳米纤维前驱体;以NiCo2O4纤维作负极材料的锂离子电池首次放电比容量为1 141 mAh/g, 100次循环后放电比容量约为415 mAh/g;电池内部成分电阻仅为3.77Ω,循环性能稳定。  相似文献   

10.
文中通过化学还原-热扩散合金化方法,制备了类方形纳米结构SnSbFe合金复合材料。SnSbFe合金颗粒分布均匀,颗粒大小为250 nm左右。与同样方法制备的纳米级Sn2Fe合金复合材料相比,SnSbFe合金复合材料的电化学性能有显著提高。该方法制备的合金复合材料通过减缓材料充放电过程中的体积变化,抑制去合金化过程中纳米锡的团聚现象,从而显著提高材料的循环性能。Sn2Fe合金复合材料首圈和第80圈放电比容量分别为694、78.6 mAh/g。而SnSbFe合金复合材料首圈和第80圈放电比容量分别为1 138、406 mAh/g。  相似文献   

11.
石墨是当前锂离子电池的主流商用电极材料,然而受限于电化学储锂机理原因,其理论比容量偏低。因此,寻找高比容量负极材料的课题受到研究人员的广泛关注。本文以蔗糖为碳源,使用水热法制备了碳包覆 ZnSe,并探究了其作为锂离子电池负极材料的电化学性能。使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及X射线衍射(XRD)等系统研究了材料的形貌、结构和组分等。结果表明,碳材料的引入,并未改变ZnSe的晶体结构。为了探究其电化学储锂特性,以金属Li作为对电极组装了锂离子电池半电池,并利用循环伏安法、恒流充放电等方法对其性能进行了评估。结果表明,相比目前常用的聚偏二氟乙烯(PVDF)黏结剂,使用羧甲基纤维素钠(CMC)作黏结剂,碳包覆ZnSe样品表现出更为优异的循环稳定性和更高的比容量。此外,相比纯ZnSe,碳包覆之后其锂离子电池储能特性得到了极大提升,在0.1 A/g电流密度下,经过 50次循环,在最优碳包覆含量下,其比容量由 228.8 mAh/g提升至 545.0 mAh/g;即使在 1 A/g电流密度下循环 500圈, 其比容量依旧保持在500 mAh/g以上。  相似文献   

12.
Rechargeable lithium-sulfur(Li-S)batteries are promising candidates for next-generation batteries because of their high theoretical specific capacity(1675 mAh/g)and specific energy(2600 Wh/kg);more-over,S is abundant,inexpensive,non-toxic,and environment friendly.However,the inherent insulating nature of S,discharge products of Li 2S,and dissolution of Li polysulfides(LiPSs)severely limit the practical applications of Li-S batteries.In this study,an N-doped ordered mesoporous carbon(NOMC)with a large specific surface area and high pyridinic N content was successfully prepared via the hard templating method.The synergetic effects of physical nanoconfinement and chemisorption restricted the LiPSs dissolution in the electrolyte.Graphitic N improved the electrical conductivity of the C materials,and pyridinic N effectively adsorbed the LiPSs,thereby inhibiting the shuttling of polysulfides in the electrolyte.The obtained C material was used as an S host,and the resultant S@NOMC composite exhibited a first discharge capacity of 853 mAh/g.The capacity of the composite was retained at 679 mAh/g after 500 cycles at 1 C,which corresponds to a decay rate of 0.042%per cycle.  相似文献   

13.
作为锂离子电池负极材料,碳基材料性能稳定但比容量有限,金属硫化物比容量较高但存在结构不稳定、易溶于电解液等问题,通过引入碳材料包裹金属硫化物,可维持结构稳定并防止中间产物的溶解。将硫粉和乙酰丙酮锌加入到聚丙烯腈的有机溶液中,采用静电纺丝法及后续热处理,合成了碳包覆ZnS复合纤维。X 射线光电子能谱(XPS)结果表明,硫不仅与锌反应生成了ZnS,还对碳纤维进行了掺杂。在扫描电镜(SEM)和高角环形暗场像(HAADF)测试中可观察到纤维为棒状,外层碳为氮硫共掺杂碳,内部包裹着直径为100 nm左右的ZnS颗粒。在拉曼测试中可以看出:碳的D峰与G峰的强度比(ID/IG)达到1.35,表明碳纤维的无序程度较高。热分析结果表明,复合纤维中碳含量约为50%。电化学测试结果表明,ZnS@C在0.1 A/g的电流密度下首圈放电比容量高达834 mAh/g,单圈容量下降率仅有0.25%。在电流密度为1 A/g时,放电比容量可稳定于530 mAh/g,循环 500圈基本无容量衰减。在1.0 mV/s扫速下,电极的赝电容贡献率达到77%,表现出良好的赝电容行为和优异的储锂特性。  相似文献   

14.
锂硫电池的硫正极具有高的理论比容量(1675 mAh/g)和高的比能量(2600 Wh/kg),被认为是下一代锂电池技术。然而,单质硫以及其放电产物硫化锂导电性差和多硫化锂在电解液中溶解导致穿梭效应,严重阻碍了其商业化应用。采用硬模板法制备高比表面积和高吡啶氮掺杂的一维碳材料(NOMCs),通过物理约束和吡啶氮与多硫化锂之间强亲和力来抑制多硫化锂的穿梭效应。此材料中的石墨氮可以提高碳材料的导电性,而吡啶氮可以有效地吸附多硫化锂,抑制多硫化物在电解液中穿梭。因此,采用此材料载硫后,S@NOMCs在1C倍率下首次放电容量为853 mAh/g,充放电500次容量保持在679 mAh/g,容量衰减率仅为0.042%/圈。  相似文献   

15.
In order to investigate the effect of different B-site additions on phase structure and electrochemical properties of cobalt-free La-Mg-Ni based alloys, La0.80Mg0.20Ni2.85Al0.11M0.53 (M=Ni, Si, Cr, Cu, Fe) hydrogen storage alloys were prepared and studied systemati-cally. X-ray powder diffraction showed that the alloys consisted mainly of LaNi3 phase and LaNi5 phase except that Cr addition caused a minor Cr phase. Electrochemical testing indicated that alloys with additional Ni, Cr, Cu or Fe were activated within only 1-2 cycles, while that with Si addition needed 4 cycles. Adding Si, Cu and Fe increased cycling stability of La-Mg-Ni based alloys. However, maximum discharge capacity decreased from 362 mAh/g to 215 mAh/g in the order of Ni>Fe>Cu>Cr>Si. In addition, electrochemical kinetics of alloy electrodes was also researched by measuring high rate discharge ability (HRD), hydrogen diffusion coefficient (D) and limiting current density (IL).  相似文献   

16.
采用高温热解方法成功地合成了高容量硅/碳复合负极材料.通过X射线衍射分析、热重分析、扫描电子显微镜观察、透射电子显微镜观察、恒电流充放电测试、循环伏安法等手段研究了复合材料的性能.结果表明:硅/碳复合材料由Si、C以及少量SiO2组成;硅/碳复合材料中碳的质量分数约在39%左右;经电化学性能测试,在电流0.2 m A下,该硅/碳复合材料首次充电容量768 m Ah·g-1,首次库仑效率75.6%,70次循环后可逆比容量仍为529 m Ah·g-1,平均容量衰减率为0.44%.这些性能改善归因于硅/碳复合材料中碳的引进,硅表面存在的碳涂层提供了一个快速锂运输通道,降低了电池的阻抗并且充放电过程中稳定了电极的组成.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号