首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
X射线荧光光谱法测定高炉除尘灰中4组分   总被引:1,自引:0,他引:1       下载免费PDF全文
史玉奎 《冶金分析》2010,30(2):51-54
试样在高温下灼烧消除游离碳的影响,然后用熔融法制备样片,X射线荧光光谱法测定高炉除尘灰试样中TFe、SiO2、CaO、MgO含量。使用铁矿石标准样品建立校准曲线,通过数学校正消除元素间的重叠和吸收-增强效应。本方法用于高炉除尘灰中4组分的测定,结果与湿法测试结果相符。对样品进行精密度试验,测得相对标准偏差在0.38%~5.0%间(n=7)。  相似文献   

2.
本文研究电感耦合等离子发射光谱法应用于除尘灰、瓦斯灰等含铁物料中磷、铅、锌等多元素的同时定量分析,建立了含铁物料采用灼烧除碳技术、微波解辅助溶样和碱熔融法的样品处理方法;研究了应用ICP-AES法同时测定微量磷、铅、锌等元素的试样处理条件条件、背景扣除技术、干扰消除、检测精密度和准确度,并给出了各元素的定量检测下限,结果回收率在95.2%~102.7%之间,RSD≤3%。  相似文献   

3.
采用湿法分析对高炉除尘灰中硫、铜、铅、砷、锡、铋进行定值,通过选取合适的仪器分析条件,以粉末压片制样,在X射线荧光光谱仪上建立高炉瓦斯灰中硫、铜、铅、砷、锡、铋工作准曲线。该方法操作简单方便,其准确度、精密度均满足GB/T 27404-2008相关要求,完全满足韶钢高炉除尘灰中硫、铜、铅、砷、锡、铋含量的检测要求。  相似文献   

4.
实验重点探讨了高含量碳对除尘灰样品中镁、铝、钾、钙、铬、锰、铜、钡、铅、镉、锌等元素测定的影响,并解决了除碳的问题。样品使用马弗炉高温除碳,采用盐酸-硝酸-氢氟酸-高氯酸消解样品灰分,选择了镁、铝、钾、钙、铬、锰、铜、钡、铅、镉、锌等元素的分析谱线和扣背景模式,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定高碳除尘灰中镁、铝、钾、钙、铬、锰、铜、钡、铅、镉、锌等元素的方法。在仪器最佳工作条件下,各元素校准曲线线性相关系数r均大于0.999 5,方法检出限在1.08~26.01 mg/kg之间。方法应用于除尘灰实际样品中镁、铝、钾、钙、铬、锰、铜、钡、铅、镉、锌的测定,结果的相对标准偏差(RSD,n=11)为0.90%~7.1%,目标元素的加标回收率为90%~117%;按照实验方法测定除尘灰中镁、铝、钾、钙、锌,结果与火焰原子吸收光谱法(FAAS)的测定结果相吻合。  相似文献   

5.
中国工业生产过程中,每年产生近亿吨的烧结除尘灰,而准确测定烧结除尘灰中元素含量,可大大提高烧结除尘灰的回收利用率。针对烧结除尘灰中铁、碳元素含量较高的问题,实验采用盐酸-硝酸-氢氟酸以微波消解的方式溶解烧结除尘灰样品,高效溶解样品可消除碳元素干扰;采用基体匹配法配制标准系列溶液,选用谱线拟合校正(FACT)与自动匹配法相结合方式可有效校正基体铁元素的干扰。最终选择K 766.491nm、Na 588.995nm、Ca 317.933nm、Mg 285.213nm、Al 308.215nm、Zn 206.200nm、Pb 283.305nm、Cu 324.754nm、P 177.434m作为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定烧结除尘灰中钾、钠、钙、镁、铝、锌、铅、铜、磷的方法。结果表明,在仪器最优工作状态下,各元素校准曲线线性相关系数均大于0.9990,各元素定量限为0.0006%~0.0032%。方法应用于2个烧结除尘灰样品中9种元素的测定,结果的相对标准偏差(RSD,n=6)均小于5.0%。分别使用实验方法与其他化学方法测定相同烧结除尘灰样品中钾、钠、钙、镁、铝、锌、铅、铜、磷,测定结果基本一致。  相似文献   

6.
由于除尘灰组分复杂,逐一分析难度较大,因此,采用熔融制样-X射线荧光光谱法(XRF)测定除尘灰中多种组分。实验采用在950℃除C,选择质量比为2∶1的Li2B4O7-LiBO2为熔剂,LiNO3为氧化剂,LiBr溶液为脱模剂进行熔融制样,采用铁矿石标样绘制校准曲线,并通过在含锌矿标样加入ZnO基准试剂的方法扩大了Zn的分析范围,以满足不同类型除尘灰中Zn含量差别的要求。各组分校准曲线的线性相关系数为0.9981~0.9999。实验方法用于测定1个除尘灰中TFe、SiO2、Al2O3、CaO、MgO、MnO、P、Na2O、K2O、Zn,各组分测定结果的相对标准偏差(RSD,n=10)为0.071%~1.7%;按照实验方法测定5个除尘灰样品(包括高炉除尘灰、转炉除尘灰和污泥等)中10种组分,并与化学湿法进行比较,测定结果相符。  相似文献   

7.
样品采用硝酸溶解,加入氨水将待测物沉淀,用无灰滤纸过滤,滤渣经过灼烧后用四硼酸锂和偏硼酸锂混合熔剂熔制成试料片,以波长色散X射线荧光光谱仪进行检测,实现了熔融制样-X射线荧光光谱法测定镧铈镨钕稀土合金中镧、铈、镨、钕的含量。以高纯物质配制校准标样,并分别采用干扰系数法进行谱线重叠干扰校正和可变理论α影响系数法(COAL模式)进行基体效应校正。对方法的精密度和回收率进行考察,相对标准偏差(RSD,n=11)小于2%,回收率介于98%~101%之间。对镧铈镨钕稀土合金实际样品进行分析,测定结果同电感耦合等离子体原子发射光谱法的结果相一致。  相似文献   

8.
从分析样品的制备、分析方法的检出限、精密度和准确度方面,对同时测定地球化学样品中的铜、铅、锌和镍的电感耦合等离子体原子发射光谱法(ICP-AES)、X射线荧光光谱法(XRF)和摄谱法进行了比较。其中ICP-AES采用王水溶样,各元素选用干扰较少的分析线进行测定;XRF采用岩石、土壤、水系沉积物和合成灰岩光谱分析标准物质等国家标准物质绘制校准曲线,使用铑靶Kα线的康普顿散射线作内标校正基体效应;摄谱法无需称样,采用碘酸钾饱和溶液作为缓冲剂进行摄谱,CTS计算机自动译谱仪进行定量译谱。经过比较后得出:ICP-AES测量范围宽,检出限低,精密度高,准确度好,适合大批量地球化学样品中铜、铅、锌、镍的测定;XRF检出限、精密度和准确度基本满足区域地球化学调查规范的要求,其分析效率取决于地球化学样品压制的成型率;摄谱法检出限、精密度和准确度基本符合要求,其分析流程长,操作繁琐,对于大批量地球化学样品测定,分析效率比较低。  相似文献   

9.
张蕾 《冶金分析》2022,42(5):67-73
快速准确地测定炉渣中多种组分含量,既是冶炼生产工艺的要求,也是环境保护和冶金废弃物综合利用的要求。实验采用聚酯(PET)薄膜包裹粉末压片法制样,选取与待测样品粒度一致的炉渣标准样品与高纯物质按照不同的比例,配制成各组分含量从低到高具有一定梯度炉渣校准样品,对其拟合校准曲线,建立了X射线荧光光谱法(XRF)同时测定高炉渣、转炉渣、电炉渣或平炉渣中SiO2、TFe、Al2O3、CaO、MgO、TiO2、S、P2O5、TMn含量的快速分析方法。PET薄膜包裹压片制样,减少了粉尘污染,把对仪器损坏的几率降到了最低,而且可以防止压片暴露在空气中,增加压片保存时间。通过调整仪器分析参数,控制试样在粒度大小方面一致以及采用OXSAS软件自带的TL+方程同时进行谱线重叠干扰校正和基体效应校正,有效地克服了炉渣复杂体系中各元素谱线干扰与基体效应,实现了粉末压片制样-X射线荧光光谱法对炉渣各组分的测定。按照实验方法对高炉渣样品进行精密度试验,结果的相对标准偏差(RSD,n=10)为0.16%~2.1%。采用实验方法对高炉渣、转炉渣、电炉渣或平炉渣标准样品和实际样品进行测定,结果与认证值或熔融法测定值相吻合。  相似文献   

10.
红土镍矿焙砂、烟尘及电炉渣等镍铁冶炼过程物料经氧化预处理后熔融制样,采用铁矿石、转炉渣标准样品与自制的红土镍矿标样组合建立X射线荧光光谱(XRF)分析校准曲线,实现了镍铁冶炼过程物料中Ni、Fe、SiO2、MgO、CaO、P2O5、Al2O3、Cr2O3、MnO、Co等10种组分的快速准确测定。试验发现,样品粒度为200目(74 μm),900 ℃温度下空气氧化45 min后,各还原性组分的质量分数均较低,在此氧化条件下经氧化灼烧的红土镍矿焙砂、烟尘及电炉渣样品中金属单质及残碳质量分数均可降至0.1%以下,达到了使用铂黄合金坩埚对样品制备熔融片的要求。选择偏硼酸锂和四硼酸锂混合熔剂、稀释比为10、在1 050 ℃熔融15 min,熔融效果较好。采用理论α系数进行基体校正,各测定组分校准曲线的线性相关系数达到0.999以上。采用红土镍矿及其焙砂、烟尘和电炉渣样品进行分析,精密度实验结果表明,各组分测定值的相对标准偏差(RSD, n=9)小于5%。测定结果根据灼烧减量校正计算后得出样品中各组分含量,结果与化学法测定值基本一致。  相似文献   

11.
样品用过氧化钠高温熔融,试液经硝酸-盐酸酸化后,选择Cr 267.716 nm 作为分析谱线,采用两点法扣除背景克服光谱背景干扰和基体匹配方法消除物理干扰,以铁基体溶液建立校准曲线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定高碳铬铁中铬的方法。在仪器工作条件下,校准曲线的线性范围为w(Cr)=40%~100%,线性相关系数r>0.999。按照实验方法测定高碳铬铁标准样品、合成样品以及实际样品,测定值与认定值、理论值或标准方法GB/T 4699.2-2008测定值基本一致,结果的相对标准偏差(RSD,n=6)小于1.0%。  相似文献   

12.
程晓娟 《冶金分析》2016,36(12):50-54
消除基体干扰是石墨炉原子吸收光谱法测定铁矿石试样中痕量铅的一个难题。实验通过将铅标准溶液系列加入到铁矿石标准样品溶液中以绘制标准加入校准曲线,然后再用建立的标准加入校准曲线对其他铁矿石试样中铅进行测定以消除铁矿石的基体干扰。据此,建立了标准加入校准法-石墨炉原子吸收光谱法(GFAAS)测定铁矿石试样中痕量铅的方法。实验表明,设置灰化程序为350 ℃保持30 s,600 ℃保持15 s,原子化温度为1 600 ℃、保持4 s,标准加入校准曲线的相关系数为0.999 8,方法的检出限为0.43 mg/kg。方法应用于铁矿石标准样品中铅的测定,测定值和认定值吻合性较好,相对标准偏差(RSD,n=6)小于7.0%。采用方法对铁矿石标准样品和实际样品进行加标回收试验,回收率在93%~98%之间。  相似文献   

13.
铝-锌-铟系合金牺牲阳极样品用盐酸和过氧化氢溶解,选择干扰少或没有干扰且灵敏度高的谱线作为待测元素的分析谱线,采用左、右两点扣背景的方法校正光谱干扰和基体匹配方法消除物理干扰,实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝-锌-铟系合金牺牲阳极中铁、铜、铟、锡、锌、镉、镁、钛和硅等元素。方法中各元素检出限在0.000 011%~0.000 77%(质量分数)之间,校准曲线的线性相关系数r>0.997。按照方法测定实际样品,测定结果的相对标准偏差RSD≤4.0%(n=10)。标准样品的测定值与认定值一致;实际样品的加标回收率为99%~110%。  相似文献   

14.
任玲玲 《冶金分析》2018,38(2):71-75
使用盐酸-氢氟酸并采用微波消解处理炉渣样品,选择B 182.577nm或B 249.678nm为分析线,在基体没有明显干扰的情况下,选择自动匹配法(FITTED)进行谱线校正并扣除相应背景,采用高纯物质进行基体匹配后,配制标准溶液系列,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定炉渣系列样品中硼元素含量的方法。硼的质量分数为0.0006%~0.25%(B 182.577nm)或0.0008%~0.25%(B 249.678nm)范围内校准曲线呈线性,线性相关系数r均不小于0.9998;方法中硼的检出限小于0.0002%。方法应用于炉渣样品中硼的测定,结果的相对标准偏差(RSD,n=6)小于3%,加标回收率为96%~102%,与电感耦合等离子体质谱法(ICP-MS)进行比较,测定结果较为满意。  相似文献   

15.
钒渣是制备钒氧化物、钒金属材料等高钒基体产品的关键原料,快速准确掌握其成分含量是调控工艺参数、确保产品质量的前提条件。使用化学湿法检测效率低、周期长,而X射线荧光光谱法(XRF)难以满足微量元素测定需要,为此建立了碱熔-电感耦合等离子体原子发射光谱法(ICP-AES)同时测定钒渣中V、Si、Ca、Mg、Al、Mn、Cr、Ti、P的分析方法。重点试验了熔剂的配比及用量、反应温度及时间等熔解条件,最终优选0.10 g钒渣样品采用0.80 g碳酸钾-硼酸(K2CO3-H3BO3,质量比为1∶1)混合熔剂在950 ℃熔融反应25 min的方式分解样品;通过光谱干扰试验,优选出灵敏度适宜且未受共存组分光谱重叠干扰的V 289.332 nm、Si 251.611 nm、Ca 317.933 nm、Mg 285.213 nm、Al 396.152 nm、Mn 293.306 nm、Cr 267.716 nm、Ti 323.904 nm、P 178.284 nm作为待测元素分析谱线,满足同时测定钒渣中常量和微量元素的需要;试验了在构成复杂的钒渣组分与碱金属熔剂共存体系下,连续背景叠加、基体效应等影响因素对分析谱线的干扰,通过基体匹配和同步背景校正法消除其影响,并且优化分析谱线的积分区域、背景校正区域等检测条件,改善了方法检测性能。结果表明:测定范围为0.10%~20.0% V,0.10%~15.0% Si,0.10%~10.0% Ca、Mg、Al、Mn、Ti,0.10%~5.0% Cr,0.01%~1.0% P;校准曲线线性相关系数不小于0.999 6;方法检出限为0.000 6%~0.002 7%。按照实验方法测定钒渣中各组分,质量分数大于0.1%时结果的相对标准偏差(RSD,n=8)小于1.0%,质量分数小于0.1%时结果的相对标准偏差(RSD,n=8)小于3.0%;钒渣标准样品的测定值与标准值相吻合。  相似文献   

16.
精炼镍是冶炼不锈钢的优质原材料,产品有通用镍、镍豆等,需要检验其中的杂质元素。采用硝酸(1+1)溶解样品,选择Si 251.612nm、Mn 257.610nm、P 178.217nm、Fe259.940nm、Cu 324.754nm、Co 238.892nm、Mg 279.553nm、Al 396.153nm、Zn 206.191nm、Cr 267.716nm为分析线,离峰扣背景校正法消除背景干扰,无镍基体匹配的方法绘制校准曲线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定了精炼镍中硅、锰、磷、铁、铜、钴、镁、铝、锌、铬等10种元素。方法中各元素校准曲线的线性相关系数均大于0.999 5;各待测元素的检出限为0.000 12%~0.001 9%。按照实验方法测定精炼镍样品和Nickel200标准样品中硅、锰、磷、铁、铜、钴、镁、铝、锌、铬,样品测定结果的相对标准偏差(RSD,n=11)在1.0%~10%之间,而标样的测定值和认定值相符。对精炼镍试样的加标回收率在90%~105%之间。  相似文献   

17.
提出了一种简便和快速测定高炉煤粉助燃剂中多元素的电感耦合等离子体原子发射光谱法。采用盐酸、硝酸和氢氟酸溶解试样,选择408.672 nm、418.660 nm、766.491 nm、589.592 nm、167.078 nm和275.573 nm波长的光谱线分别作为La 、Ce、 K、 Na、 Al 和Fe的分析线,以离峰单背景扣除和基体匹配的方法消除光谱干扰。校准曲线的线性范围分别为0.002%~1.0%(La、Ce),0.005%~1.0%(K、Na), 0.005%~5.0%(Al、Fe)。各元素校准曲线的相关系数均大于0.999 0,检出限分别为0.004 μg/mL(La、Ce)和0.01 μg/mL(K、Na、Al、Fe)。方法用于高炉煤粉助燃剂中镧、铈、钾、钠、铝、铁的测定,结果同其它检测方法的结果相一致,相对标准偏差在0.23%~8.6%范围内。  相似文献   

18.
样品经硝酸-氢氟酸-高氯酸混合酸溶解后,用氯化铵调节酸度,加入缓冲溶液使溶液的pH值保持在10~11,使铁、钴、镍等干扰元素沉淀,选择Cd 228.802 nm作为分析线,并设置合适的背景扣除位置,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定地质样品中镉。镉的质量浓度在0.000 176~0.160 mg/L范围内与其发射强度呈线性,相关系数r=0.999 8。镉的检出限为0.06 μg/g。实验方法用于测定两个地质标准样品中镉,结果的相对标准偏差(RSD,n=12)分别为2.3%和3.2%。按照实验方法测定地质标准样品中镉,结果与认定值相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号