首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
臭氧-生物活性炭滤池运行及水厂成本变化研究   总被引:1,自引:1,他引:0  
代荣  汪利军 《给水排水》2006,32(10):12-19
处理规模10万m3/d的杭州南星水厂是钱塘江水源水厂首座采用臭氧-生物活性炭工艺(O3-BAC)进行深度处理的水厂.通过对O3-BAC处理效果的各影响因素进行生产性研究,确定适宜的余臭氧浓度为0.15~0.25 mg/L,BAC滤池水力负荷可大于设计值10 m3/(m2·h),运行周期设定为10 d左右,加臭氧有助于提高O3-BAC对CODMn的去除效果,同时推断在秋冬季水温较低(7~16℃)的情况下,BAC滤池的生物挂膜时间为运行后101~105 d.原水CODMn<4.59 mg/L时,采用常规处理即可将出水CODMn控制在2 mg/L以下.实施臭氧预处理和O3-BAC深度处理后,水厂总运行成本增加0.199元/m3.  相似文献   

2.
采用臭氧-活性炭-超滤(O3-GAC-UF)处理石油微污染水,研究该组合工艺对水中石油污染物的去除效果.结果表明,当原水油含量为4 mg/L左右时,在臭氧投加量约为4 mg/L、反应时间为12 min、活性炭停留时间为12 min条件下,超滤出水油含量为0.027 mg/L,对色度、浊度和CODMn的去除率均接近100%,UV254从0.117 cm-1降低为0.004 cm-1,并且随着处理水量的增加,系统运行稳定.臭氧-活性炭-超滤工艺可以作为处理石油微污染水的一种有效方法.  相似文献   

3.
利用纳滤和反渗透膜深度处理工艺进行长江原水水质净化中试研究,工艺流程为长江原水→混凝沉淀→沙滤→颗粒活性炭→纳滤/反渗透,比较纳滤、反渗透膜工艺对污染物特别是微量有机物苯系物、三氯乙烯及消毒副产物等的去除效果。结果表明膜工艺预处理能够有效地去除原水的浊度和部分污染物,有利于纳滤、反渗透的稳定运行。纳滤膜工艺的最佳操作压力是0.4 MPa,此压力下产水量为250 L/h,回收率为24%,SO42-,Cl-,NO3-和总硬度的去除率分别为91.7%,85.4%,85.2%,89.3%;采用浓缩水回流能兼顾较高的回收率和良好的去除率。2种膜工艺对苯系物与三氯乙烯的去除率均在95.7%以上;对消毒副产物也有较好的控制效果,其中大部分的削减率在63.7%以上。与反渗透膜工艺比较,纳滤膜工艺具有较低的生产成本。纳滤膜工艺净化出水中可部分保留对人体有益的矿物质,使得净化后的出水成为优质健康饮用水。  相似文献   

4.
缪刚  鲍娟  陈云霄  林涛  陈卫 《水资源保护》2017,33(6):109-113
研究臭氧-生物活性炭工艺在间歇性运行时炭层中生物量的保持方法以及不同保存方式对该工艺重新运行净化效能的影响。结果表明,臭氧-生物活性炭工艺在停止运行后对生物活性炭柱采用浸泡保存时,活性炭层中的水质发生了很大的变化,活性炭层中的生物量发生了下降。同时周期性的换水能够延缓活性炭柱在浸泡保存时生物量的下降速度。在臭氧-生物活性炭工艺重新运行期间,周期换水减少生物量的下降虽然对浊度和UV254的去除效果影响不大,但是能够使得臭氧-生物活性炭工艺在短时间内对CODMn和NH3-N的去除率接近活性炭工艺在保存之前对其的去除率。  相似文献   

5.
分析了臭氧-上向流生物活性炭-后置砂滤组合工艺对有机物的去除效果,考察了不同进水浊度对组合工艺运行效果的影响,分析了臭氧氧化池溴酸盐生成量。结果表明,组合工艺可以承受3.0~7.5NTU浊度变化的冲击;长期运行结果显示,组合工艺对有机物指标有较好的去除效果,较高的温度有利于水中有机污染物的去除;臭氧进水浊度小于4 NTU时,组合工艺出水中CODMn、UV254和TOC的含量分别为1.25mg/L、0.017cm~(-1)、1.539mg/L,组合工艺出水溴酸盐长期均低于5μg/L,符合国家水质标准的要求。  相似文献   

6.
超滤-纳滤工艺处理黄浦江上游原水中试研究   总被引:1,自引:0,他引:1  
采用超滤(UF)和纳滤(NF)组合工艺对黄浦江上游原水进行试验研究,其中超滤与常规处理工艺相似,去除浊度、铁、锰等效果较好,对有机物去除效果较差,经过纳滤才能使出水CODMn降到1 mg/L以下,氨氮0.5 mg/L以下.在保持90 L/(h·m2)通量时,原水直接进行超滤,可以实现较长时间的稳定运行,投加絮凝剂对于缓解膜阻力上升效果不明显.纳滤膜通量比较稳定,主要影响因素是操作压力和温度.  相似文献   

7.
南水北调的应急工程是从河北四水库调水进京,为了保证净水厂运行稳定,进行了适应性研究,并采用层次优化法对中试工艺进行选优。结果表明:第九水厂工艺运行方案为采用粉末活性炭预处理(20mg/L),混凝剂投加量为20~25mg/L;当原水藻类较高时可采用"氯+粉末活性炭"联合预处理方式;在剑水蚤数量较多时,建议砂滤池和炭池的反冲洗水不回收。第三水厂、田村山水厂采用混凝—沉淀—过滤—O3—炭池工艺,主臭氧投加量为0.5~1.5mg/L,混凝剂投加量为20~25mg/L。剑水蚤数量较少时,混凝沉淀能够将其去除,或通过主臭氧将剑水蚤杀死去除。在调水过程中,应跟踪原水MIB的变化,并加强活性炭出水的臭味检测,适时调整工艺运行参数。  相似文献   

8.
臭氧—平板陶瓷膜新型净水工艺中试研究   总被引:1,自引:0,他引:1  
为应对饮用水源受到的有机物和氨氮的复合污染,对混凝—臭氧/陶瓷膜—活性炭池新型净水工艺进行中试研究。结果表明,臭氧可以在线控制膜污染,臭氧投加量2mg/L,间歇提高臭氧投加量至5mg/L时,陶瓷膜跨膜压差在通量100L/(m2·h)下运行5d后增长小于2kPa。臭氧促进了陶瓷膜对颗粒物的去除,投加臭氧时膜出水中大于2μm粒径的颗粒数低于10个/mL。新型净水工艺能有效去除受污染原水中的有机物和氨氮,工艺对UV254的去除率为65%~95%,CODMn去除率为71%~98%,出水CODMn低于0.5mg/L;原水氨氮3.5mg/L时,工艺出水氨氮0.1mg/L,且无亚硝态氮积累,氨氮基本转化为硝态氮。此外,新型净水工艺对卤乙酸生成势的去除率高于85%,大大提高了工艺出水的安全性。实现了传统工艺与深度处理工艺的叠加集成,对水厂升级改造具有重要意义。  相似文献   

9.
从水的生物稳定性、遗传毒性、颗粒物去除、臭氧氧化副产物以及催化剂的稳定性等方面研究了臭氧催化氧化-生物活性炭技术在净水处理过程中的安全性问题.结果表明,催化剂具有优良的物理化学稳定性,能够催化臭氧氧化进一步控制AOC及其前质,减小了活性炭的污染物负荷;与生物活性炭联用可以明显减小有害有机物穿透水处理工艺的能力,进一步消减了水的遗传毒性;联用工艺可以显著地去除水中与致病原生动物相关性极大的2~10 μm颗粒物,进一步提高了饮用水的卫生安全性;催化剂对剩余臭氧的消减抑制了BrO-3生成.  相似文献   

10.
臭氧在生物活性炭工艺中作用的中试研究   总被引:3,自引:0,他引:3  
为验证臭氧在生物活性炭工艺中所起的作用,在中试系统上考察了生物活性炭与臭氧生物活性炭工艺对原水有机物的去除效能.结果表明,臭氧生物活性炭工艺对CODMn、UV254、BDOC和AOC的去除率比生物活性炭工艺分别高出21%、37.28%、10%和26.4%.在生物活性炭前设置臭氧工艺不仅能够有效降低出水中的有机物含量,而且可以在较低投氯量的条件下使细菌的致死率达到近100%.因此,为更好地发挥生物活性炭在水处理中对有机物的去除作用,应在生物活性炭前增设臭氧工艺.  相似文献   

11.
臭氧-活性炭工艺在东北寒冷地区的应用较少。某净水厂工程项目位于黑龙江省,针对原水水温低、色度较高及微污染问题,采用了臭氧-活性炭工艺,其主要设计参数:预臭氧投加量为0.5~1.5mg/L,主臭氧投加量为1.5~2.5mg/L,絮凝池停留时间为20min,沉淀池上升流速为1.63mm/s,V型滤池滤速为6.8m/h,活性炭池滤速为5.5m/h。净水厂投产2年后的水质检测表明,臭氧-活性炭工艺在冬季取得了良好的运行效果,出水水质达到国标要求。  相似文献   

12.
张家港市第四水厂以长江水为原水,采用混凝沉淀超滤纳滤的双膜深度处理工艺,日处理规模为20万m3,出水水质远优于国家《生活饮用水卫生标准标准》(GB 5749-2006)和地方标准《江苏省城市自来水厂关键水质指标控制标准》(DB32/T 3701-2019).水厂核心单元纳滤系统结合超滤预处理表现出优越的工艺性能,能去除常规工艺难以去除的有机污染物,提供高品质饮用水.水厂在纳滤水厂建设、设备安装调试、工艺稳定运行等方面开展了大量的实践工作.  相似文献   

13.
臭氧化-生物活性炭除微污染工艺过程研究   总被引:1,自引:0,他引:1  
在总结前人经验的基础上,通过实验室、现场中试研究,本文对饮用水臭氧化-生物活性炭深度净化技 术中的一些理论和实践的难题进行了探讨.试验结果表明,对于受到严重污染的水源,经过常规处理后再进行臭氧化-生物活性炭深度净化可以有效地解决饮用水微污染问题.在臭氧投量3mg/L,生物活性炭吸附过滤时间20min的条件下,可使出水COD_(Mn)<2.5mg/L(达到世界卫生组织和发达国家的水质标准),并通过色质联机检验证实,深度净化全部消除了水中有害污染物和绝大多数有机物,保证了饮用水的安全.  相似文献   

14.
周建平  许龙  芮旻  沈飚  富良 《给水排水》2012,38(1):17-20
P市地表原水受到有机物污染,水中CODMn经常高达10mg/L以上,为此,在G水厂的扩建工程中,采用了两级臭氧—生物活性炭深度处理工艺,以保证出水水质安全。水厂运行结果表明,在活性炭吸附饱和后,一级炭池出水CODMn仍有3~5mg/L,需二级臭氧—生物活性炭处理才能使出厂水CODMn小于3mg/L。当前后臭氧分级投加比例为3∶2时,有机物的去除率最高。  相似文献   

15.
饮用水深度净化工艺现场对比试验   总被引:14,自引:4,他引:10  
考察了实际生产规模的臭氧粒状活性炭工艺以及小型超滤、纳滤、反渗透膜法两种典型饮用水深度净化工艺的处理效果。试验结果发现臭氧活性炭工艺具有优良、稳定的去除有机污染物功能,而孔径较小的活性炭纤维除污染效果并不好,臭氧氧化出水、超滤出水再用压缩活性炭进行吸附处理对有机物的去除效率要比直接处理原水高。超滤膜除有机物效率不高,而反渗透和纳滤膜在较好地去除水中有机物的同时,也去除了水中绝大部分无机物,出水有机物和无机物浓度都比较低。  相似文献   

16.
在酒仙桥污水处理厂建立200m3/d的示范工程进行高品质再生水的生产,在二级出水强化脱氮除磷的基础上,采用臭氧(O3)-活性炭(GAC)-反硝化生物滤池(DNBF)工艺进行试验研究。经过13个月的试验证明,该工艺由于O3在脱色除臭基础上,能够强化活性炭滤池的生物多样性及活性,从而使出水CODCr能够长期稳定在30mg/L以下,NH3-N小于1mg/L。在外加碳源CH3COONa条件下,系统经DNBF后出水TN小于2mg/L。同时试验发现,为了实现经济节能及良好的污水再生效果,DNBF和O3单元在流程中的位置设置非常关键,有别于污水二级处理工艺。  相似文献   

17.
周家渡水厂臭氧活性炭组合工艺的运行   总被引:8,自引:2,他引:6  
周云 《给水排水》2006,32(5):19-22
周家渡水厂自采用预臭氧—常规处理—臭氧活性炭组合工艺以来已经运行4年。其中活性炭滤池运行经历了吸附、生物活性炭(BAC)和换炭3个阶段。运行结果表明,组合工艺可以提高出厂水CODMn、氨氮、锰的合格率,改善色度、紫外吸光度、臭和味及致突变性等多项水质指标。活性炭更换周期为3年半,更换量以2/3为宜。组合工艺适用于原水为Ⅲ类的地表水,经测算其增加的生产变动成本为0.24元/m3。  相似文献   

18.
臭氧—生物活性炭处理效果的影响因素与工艺分析   总被引:2,自引:0,他引:2  
桐乡市果园桥水厂深度处理工艺投入运行已逾五年。通过对二期臭氧—生物活性炭工艺长达五年的跟踪分析,阐述了臭氧接触、生物活性炭以及臭氧—生物活性炭工艺对耗氧量的去除效果,分析了水温、处理负荷、原水耗氧量、臭氧投加量等因素对耗氧量去除率的影响,并且从活性炭物理指标的下降程度说明了生物活性炭工艺的中后期以生物作用为主。总体而言,多因素综合影响着臭氧—生物活性炭工艺的处理效果。  相似文献   

19.
饮用水臭氧应用安全性研究   总被引:1,自引:0,他引:1  
对预臭氧、臭氧—生物活性炭等技术与常规水处理工艺联用中有机物去除效果、消毒副产物THMFP的消除等进行了研究。结果表明:采用适量臭氧(如1mg/L)预氧化,可有效提高混凝过程中有机物去除率;THMFP从常规处理的116μg/L降至78μg/L(1mg/LO3)。与预臭氧强化混凝联用的臭氧—生物活性炭工艺能进一步降低DOC和THMFP。研究发现:溴酸盐随着臭氧含量呈现起伏变化,溴酸盐相关前驱物不易分离去除。两次臭氧投加(预臭氧和主臭氧)均导致溴酸盐、AOC和甲醛升高;其含量可分别在后续的混凝过滤及生物活性炭过程中得到控制,仅AOC含量较原水和常规工艺出水有所升高。  相似文献   

20.
南方某水厂采用的臭氧-生物活性炭给水深度处理工艺稳定运行了6年,为了解工艺长期运行过程中在活性炭性能指标下降后,是否还能有效地去除有机物和消毒副产物,开展了试验研究。重点考察臭氧-生物活性炭对水中有机物和氯化消毒副产物的去除效果,通过与常规处理出水水质的对比,探讨其去除有机物和消毒副产物的优势。结果表明,臭氧-生物活性炭是一个长期有效的去除有机物和氯化消毒副产物的控制手段。该工艺对CODMn、TOC、UV254的去除率分别为43.2%、24.0%、58.8%;对THMsFP去除率为40.1%;对三氯甲烷和三氯乙醛的去除率分别达到54.5%和70.7%。在臭氧-生物活性炭组合处理工艺中,活性炭池是去除有机物和消毒副产物的关键工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号