首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于Duncan-Chang E-B材料本构模型,采用大型通用有限元分析软件ABAQUS,针对坝体在实际运行中分期蓄水和湿化作用的影响,对某沥青混凝土心墙堆石坝进行非线性有限元分析。在一次性蓄水、考虑湿化的一次性蓄水和分期蓄水时沥青混凝土心墙堆石坝应力应变特性的基础上,分别对坝体和心墙的水平位移、竖直沉降、大小主应力进行比较。结果表明:分期蓄水对坝体和心墙的应力变形影响较小;湿化作用对坝体和心墙的应力变形影响较大,在计算中应考虑其影响。  相似文献   

2.
基于等效线性模型,采用有限元法对在建的某水库沥青混凝土心墙堆石坝进行了理论计算,重点研究了大坝在运行期各工况水位下的渗流,以及施工期、蓄水期大坝的应力变形分布,并将理论计算结果与施工期大坝安全监测资料进行了对比分析,对蓄水期大坝渗流、坝体及心墙应力变形进行了预测分析。分析表明:其施工期的理论计算结果与监测资料基本一致。大坝防渗效果较好,沥青混凝土心墙及防渗帷幕起到了主要的阻水作用。坝体应力变形分布规律较为合理,心墙与过渡料及填筑料间能协调变形,工作性态良好,符合土石坝应力变形规律,为下一步水库蓄水验收及蓄水运行提供了科学依据。  相似文献   

3.
三峡茅坪溪沥青混凝土心墙堆石坝应力变形分析   总被引:9,自引:0,他引:9  
茅坪溪沥青混凝土心墙堆石坝是三峡工程挡水建筑物的重要组成部分。为了研究坝体及心墙在施工和蓄水条件下的工作性状,分别使用邓肯Eμ模型和清华非线性解耦KG模型,对茅坪溪沥青混凝土心墙堆石坝进行了应力和变形的有限元计算分析。计算中对心墙沥青混凝土使用了参照现场钻孔芯样试验成果修正后的强度和变形参数。根据计算结果,坝体及心墙的应力和变形值均处在合理范围之内,表明茅坪溪防护坝采用沥青混凝土心墙堆石坝坝型,并利用现场开挖料分区填筑的坝体设计方案是合理和可行的。通过对比分析,还对坝体的施工程序提出了建议。  相似文献   

4.
为了评价阳江抽水蓄能电站下水库沥青混凝土心墙堆石坝的安全性,采用非线性有限元法对覆盖层最厚的大坝断面开展应力变形计算,详细模拟大坝的施工和蓄水过程。计算结果表明:竣工期和蓄水期坝体应力变形分布规律总体合理,竣工期坝体水平位移极值分别为-22.74 cm和26.18 cm,沉降极值为-73.80 cm,沉降率为0.91%。蓄水后,坝体水平变形变化较为明显,沉降极值稍有增加;坝体大、小主应力极值分别约为1.30 MPa和0.63 MPa,位于坝基全风化层。蓄水期,心墙挠度变化范围为73.76~77.83 cm。蓄水前后,心墙大、小主应力小幅变化,均为压应力,应力水平均较小,极值为0.68,心墙不会出现剪切破坏。总体上,大坝应力变形在正常范围内,整体安全性高,大坝断面设计合理。  相似文献   

5.
采用三维非线性有限元软件,用邓肯E-B模型作为坝体及心墙的本构模型,根据心墙模型参数室内三轴试验结果,对托帕沥青混凝土心墙堆石坝进行应力变形分析,模拟大坝施工和蓄水过程,分析坝体沉降过程及心墙水力劈裂可能性。结果表明:坝体在竣工期最大沉降值为26.8 cm,现场监测最大沉降为20.5 cm,计算模型准确;预测蓄水期坝体的沉降为27.6 cm,其占最大坝高0.45%,小于1%,坝体沉降符合规范要求;心墙与上、下游过渡料之间变形不协调,最大沉降差分别为5.4 mm和7.3 mm,导致内部存在拱效应,但其上游面最小主应力大于水压力,其发生水力劈裂的可能性极小。  相似文献   

6.
为了优化设计和安全评价,对某300 m级超高直心墙堆石坝和作为比较方案的斜心墙堆石坝进行了三维有限元应力变形计算。对坝体堆石料采用邓肯张E-B非线性弹性模型,对高塑性黏土与混凝土结构接触面采用Goodman单元模型,分43级荷载对坝体的施工和蓄水过程进行模拟,比较分析两种坝型在蓄水期坝体和心墙的应力和变形性状。结果表明,相对直心墙方案,斜心墙方案计算所得坝体的最大水平位移相对较小,垂直沉降较大。斜心墙方案下心墙两岸坝肩处高应力水平区域有所减小,可以适当改善心墙上游面单元的应力和变形条件。斜心墙方案下心墙的拱效应相对较弱,其抗水力劈裂的性能稍好。  相似文献   

7.
文章通过对堆石坝体应力应变的计算,深入了解了施工期、蓄水期坝体的变形和受力情况,为施工、运行过程中提高沥青混凝土心墙适应坝体和地基变形的能力提供宏观上的参考。  相似文献   

8.
采用三维有限元法对云龙水库粘土心墙坝进行模拟,计算蓄水期坝体的应力变形和心墙的变形情况。计算结果表明,大坝应力变形满足安全要求。  相似文献   

9.
为研究塑性混凝土心墙坝的应力变形特性,通过选取合适的本构模型、接触单元、施工过程和蓄水过程模拟方法等,结合工程实际,运用三维非线性有限元法对大坝应力变形进行计算分析。研究结果表明:在竣工期和蓄水期,坝体的水平位移及垂直位移的分布特征与一般均质土坝一致;大坝的大主应力均为压应力,从坝面向坝内应力逐渐增大,且最大值发生在坝体底部心墙附近;小主应力除局部存在较小的拉应力外,其余均为压应力。  相似文献   

10.
为研究碾压式沥青混凝土心墙坝施工及运行期的受力特性,以新疆某水利枢纽工程为例,采用非线性邓肯-张E-B模型进行大坝三维有限元静力计算,采用等效线性粘弹性模型进行大坝三维有限元动力计算,采用三维等价结点力法研究坝体地震永久变形,主要研究坝体在静动力条件下坝体和防渗体的应力、变形以及基座与心墙的相对位移。结果表明,静力条件下,坝体最大沉降约占坝高的0. 27%,蓄水后心墙最大压应力较竣工期减少约14. 2%,蓄水后心墙顺河向最大位移较竣工期增大约2. 6倍、沿坝轴线方向减小约13. 3%;动力条件下,坝体地震沉降约占坝高的0. 09%,地震发生时坝体最大横断面心墙出现拉应力,其值约为最大压应力的9. 5%,地震结束后心墙最大压应力减小约16. 7%,未出现拉应力,地震后坝体顺河向发生永久位移,心墙最大压应力较地震前增大1. 9%,心墙顺河向最大位移较地震前增大约15. 4%、沿坝轴线方向减小约11. 5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号