首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To enhance the efficiency of nitrate removal from synthetic groundwater, wheat rice stone (WRS) and granular activated carbon (GAC) were employed as biofilm carriers for denitrification under different HRT (hydraulic retention time) and C/N ratios. Four different ratios of GAC to WRS (0, 0.5, 1.0, and 2.0) were investigated to determine the most appropriate ratio of GAC and WRS. The NO(3)(-)-N, NO(2)(-)-N, COD levels and pH of the effluent were also investigated under various HRT and C/N ratios. The results showed that the column at a GAC/WRS ratio of 1.0 performed best under a C/N ratio of 0.9 and an HRT of 8 h, with 99% nitrate being removed. In addition, little nitrite accumulation and chemical oxygen demand (COD) were observed in effluent under these conditions. These results demonstrated that, with no addition of phosphor in the influent, the nitrate removal efficiency can be enhanced by WRS because WRS can leach trace elements and phosphor to promote the growth of bacteria.  相似文献   

2.
An integrated anaerobic-aerobic treatment system of sulphate-laden wastewater was proposed here to achieve low sludge production, low energy consumption and effective sulphide control. Before integrating the whole system, the feasibility of autotrophic denitrification utilising dissolved sulphide produced during anaerobic treatment of sulphate rich wastewater was studied here. An upflow anaerobic sludge blanket reactor was operated to treat sulphate-rich synthetic wastewater (TOC=100 mg/L and sulphate=500 mg/L) and its effluent with dissolved sulphide and external nitrate solution were fed into an anoxic biofilter. The anaerobic reactor was able to remove 77-85% of TOC at HRT of 3 h and produce 70-90 mg S/L sulphide in dissolved form for the subsequent denitrification. The performance of anoxic reactor was stable, and the anoxic reactor could remove 30 mg N/L nitrate at HRT of 2 h through autotrophic denitrification. Furthermore, sulphur balance for the anoxic filter showed that more than 90% of the removed sulphide was actually oxidised into sulphate, thereby there was no accumulation of sulphur particles in the filter bed. The net sludge productions were approximately 0.15 to 0.18 g VSS/g COD in the anaerobic reactor and 0.22 to 0.31 g VSS/g NO3- -N in the anoxic reactor. The findings in this study will be helpful in developing the integrated treatment system to achieve low-cost excess sludge minimisation.  相似文献   

3.
Simultaneous denitrification and methanogenesis were accomplished in a single upflow sludge blanket (USB) reactor. More than 99% and 95% of nitrate and chemical oxygen demand (COD) removal rates were obtained at a loading of 600 mg NO3-N/L x d and 3,300 mg COD/L x d, respectively. The specific denitrification rate (SDR) increased as COD/NO3-N ratios decreased. Maximum SDR with acetate could reach 1.05 g NO3-N/gVSS x d. Significant sludge flotation was observed at the top of the reactor due to the change of microbial composition and the formation of hollow granules. Granules became fluffy and buoyant due to the growth of denitrifiers. Microscopic examination showed that granules exhibited layered structure and they were mainly composed of Methanosarcina sp., Pseudomonas sp., and rod-shaped bacteria.  相似文献   

4.
An expanded granular sludge bed (EGSB) reactor was adopted to incubate the sludge biogranule that could simultaneously achieve sulfate reduction and sulfide reoxidization to elemental sulfur for treating molasses distillery wastewater. The EGSB reactor was operated for 175 days at 35 °C with a pH value of 7.0, chemical oxygen demand (COD) loading rate of 4.8 kg COD/(m3 d), and sulfate loading rate of 0.384 kg SO(4)(2-)/(m3 d). The optimal operation parameters, including the oxidation reduction potential (ORP), recycling rate, and hydraulic retention time (HRT), were established to obtain stable and acceptable removal efficiencies of COD, sulfate, and higher elemental sulfur production. With an ORP of -440 mV, a recycling rate of 300%, and HRT of 15 h, the COD and sulfate removal efficiencies were 73.4 and 61.3%, respectively. The elemental sulfur production ratio reached 30.1% when the elemental sulfur concentration in the effluent was 48.1 mg/L. The performance results were also confirmed by the mass balance calculation of sulfate, sulfide, and elemental sulfur over the EGSB reactor.  相似文献   

5.
Nitrogen removal efficiency of a pilot-scale system consisted of Modified Ludzack-Ettinger (MLE) followed by sulfur-utilizing denitrification (SUDNR) process was evaluated with a landfill leachate. For SUDNR, a down-flow mode sulfur packed bed reactor (SPBR) filled with sulfur and limestone particles was used. Although total nitrogen removal efficiency of the MLE process was about 80% at the recycle ratio of 4, effluent contained 350-450 mg/L NO(3-)-N. Up to a loading rate of 1.2 kg NO(3-)-N/m3-day, the SPBR could achieve complete removal of nitrate, and nitrate removal rate was kept to that level even at higher loading rate. When a COD/N ratio of MLE process was maintained at 2 instead of 4, more organics with molecular weight less than 500 were utilized for heterotrophic denitrification although denitrification was not complete with the lack of electron donors. Clogging in the SPBR, mainly by the accumulation of nitrogen gas in the pores, could easily be removed by introducing the effluent in an upward direction for 1 min at 1 hr intervals. The proposed treatment system could achieve nitrate free effluent with a slight increase in chemical cost. Furthermore, depending on further COD removal requirement after biological treatment, the proposed treatment system can be an economical solution.  相似文献   

6.
A 2.0 L volume of EGSB reactor was operated at 20 degrees C for more than 500 days with 0.3-0.4 g COD/L of sucrose base wastewater to investigate the influence of effluent-recirculation on the process performance. At the start up period, the reactor was operated in EGSB mode with 5 m/h upflow velocity by continuous effluent recirculation. The COD loading was set to 7.2-9.6 kg COD/m(3) day with HRT of 1 hour. However, in this mode, EGSB reactor exhibited insufficient COD removal efficiency, i.e., 50-60%. Therefore, UASB mode (without recirculation, 0.7 m/h upflow velocity) was used for 30 minutes in every 40 minutes cycle to increase the COD concentration in the sludge bed. As a result, an excellent process performance was shown. The COD removal efficiency increased from 65% to 91% and the reactor could maintain a good physical property of retained sludge (sludge concentration: 33.4 g VSS/L and SVI: 25 mL/g VSS). Furthermore, retained sludge possessed sufficient level of methanogenic activity at 20 degrees C.  相似文献   

7.
The present study was conducted to compare the behavior of wheat straw, sawdust and biodegradable plastic (BP) as potential carbon sources for denitrification in groundwater remediation. The results showed that a greater amount of nitrogen compounds were released from wheat straw and sawdust than from BP in leaching experiments. In batch experiments, BP showed higher nitrate removal efficiency and longer service life than wheat straw and sawdust, which illustrated that BP is the most appropriate carbon source for stimulation of denitrification activity. In column experiments, BP was able to support complete denitrification at influent nitrate concentrations of 50, 60, 70, 80, and 90 mg NO(3)(-)-N/L, showing corresponding denitrification rates of 0.12, 0.14, 0.17, 0.19, and 0.22 mg NO(3)(-)-N.L(-1).d(-1).g(-1), respectively. These findings indicate that BP is applicable for use as a carbon source for nitrate-polluted groundwater remediation.  相似文献   

8.
改进型移动床生物膜反应器处理有机废水的试验   总被引:1,自引:0,他引:1       下载免费PDF全文
改进型移动床生物膜反应器(CMCBR)是在普通移动床生物膜反应器中引入导流板,使填料在全池循环移动,消除了普通移动床生物膜反应器的死角。在CMCBR处理模拟生活污水的试验中,研究了有机物的去除效果,考察了容积负荷、水力停留时间、冲击负荷等参数对处理效果的影响。试验发现,在填料填充比例为50%(体积比),进水COD质量浓度为320~550mg/L,水力停留时间为3 h的条件下,出水COD质量浓度小于100 mg/L,达到国家污水综合排放标准的一级标准。反应器具有较强的抗冲击负荷能力,出水水质稳定。  相似文献   

9.
The use of a membrane bioreactor (MBR) for removal of organic substances and nutrients from slaughterhouse plant wastewater was investigated. The chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations of slaughterhouse wastewater were found to be approximately 571 mg O2/L, 102.5 mg/L, and 16.25 mg PO4-P/L, respectively. A submerged type membrane was used in the bioreactor. The removal efficiencies for COD, total organic carbon (TOC), TP and TN were found to be 97, 96, 65, 44% respectively. The COD value of wastewater was decreased to 16 mg/L (COD discharge standard for slaughterhouse plant wastewaters is 160 mg/L). TOC was decreased to 9 mg/L (TOC discharge standard for slaughterhouse plant wastewaters is 20 mg/L). Ammonium, and nitrate nitrogen concentrations of treated effluent were 0.100 mg NH4-N/L, and 80.521 mg NO3-N/L, respectively. Slaughterhouse wastewater was successfully treated with the MBR process.  相似文献   

10.
One of the major challenges of anaerobic technology is its applicability for low strength wastewaters, such as sewage. The lab-scale design and performance of a novel Gradual Concentric Chambers (GCC) reactor treating low (165+/-24 mg COD/L) and medium strength (550 mg COD/L) domestic wastewaters were studied. Experimental data were collected to evaluate the influence of chemical oxygen demand (COD) concentrations in the influent and the hydraulic retention time (HRT) on the performance of the GCC reactor. Two reactors (R1 and R2), integrating anaerobic and aerobic processes, were studied at ambient (26 degrees C) and mesophilic (35 degrees C) temperature, respectively. The highest COD removal efficiency (94%) was obtained when treating medium strength wastewater at an organic loading rate (OLR) of 1.9 g COD/L.d (HRT = 4 h). The COD levels in the final effluent were around 36 mg/L. For the low strength domestic wastewater, a highest removal efficiency of 85% was observed, producing a final effluent with 22 mg COD/L. Changes in the nutrient concentration levels were followed for both reactors.  相似文献   

11.
This paper presents the design and operational performance data of an anaerobic/aerobic hybrid side-stream Membrane Bioreactor (MBR) process for treating paper mill effluent operated over a 6 month period. The paper mill effluent stream was characterized by a chemical oxygen demand (COD) range of between 1,600 and 4,400 mg/L and an average BOD of 2,400 mg/L. Despite large fluctuations in COD feed concentration, stable process performance was achieved. The anaerobic Expanded Granular Sludge Bed (EGSB) pre-treatment step effectively lowered the organic loading by 65 to 85%, thus lowering the MBR COD feed concentration to consistently below 750 mg/L. The overall MBR COD removal was consistent at an average of 96%, regardless of the effluent COD or changes in the hydraulic retention time (HRT) and organic loading rate (OLR). Combining a high-rate anaerobic pre-treatment EGSB with a Modified Ludzack-Ettinger (MLE) MBR process configuration produced a high quality permeate. Preliminary NF and RO results indicated an overall COD removal of around 97 and 98%, respectively.  相似文献   

12.
Subsurface flow wetlands contain gravel or sand substrates through which the wastewater flows vertically or horizontally. The aims of this study were, firstly, to quantify biofilm development associated with different size gravel in sections of a subsurface flow wetland with and without plants, and secondly, to conduct laboratory experiments to examine the role of biofilms in nutrient removal. Techniques to quantify biofilm included: bacterial cell counts, EPS and total protein extraction. Based on comparative gravel sample volume, only EPS was greater on the smaller 5 mm gravel particles. There was no significant difference between biofilm growth in sections with and without plants. Two vertical flow laboratory-scale reactors, one containing fresh wetland gravel, the other containing autoclaved gravel, were constructed to determine nutrient transformations. The autoclaved gravel in the "sterile" reactor rapidly became colonised with biofilm. Both reactors were dosed with two types of influent. Initially the influent contained 7.25 mg/L NO3-N and 0.3 mg/L NH4-N; the biofilm reactor removed most of the ammonium and nitrite but nitrate concentrations were only reduced by 20%. In the "sterile" reactor there was negligible removal of ammonium and nitrite indicating little nitrification, however nitrate was reduced by 72%, possibly due to assimilatory nitrate reduction associated with new biofilm development. When the influent contained 3 mg/L NO3-N and 16 mg/L NH4-N almost 100% removal and transformation of NH4-N occurred in both reactors providing an effluent high in NO3-N. Organic P was reduced but inorganic soluble P increased possibly due to mineralisation.  相似文献   

13.
An airlift reactor using zeolite particles as carrier material was used for the nitrification of effluents from the aquaculture industry. During the start-up the nitrogen concentration was kept around 100 mg NH4(+)-N/L to develop the nitrifying population. Later it was decreased down to around 3 mg NH4(+)-N/L and the dilution rate was increased up to 4.8 d(-1) in order to simulate the conditions in a an aquaculture waster treatment system. A nitrogen loading rate (NLR) of 535 mg NH(+)-N/m2 d was fully oxidized to nitrate. Higher values of NLRs caused nitrite accumulation. A second biofilm reactor was fed with a synthetic medium containing 50 mg NH4(+)-N/L which simulated the effluents from anaerobic units treating domestic wastewater. A nitrogen loading rate of 400 mg NH4(+)-N/L d was oxidized into nitrate with an efficiency of 60% at a dilution rate of 8 d(-1). Both biofilm systems allowed the development of a nitrifying population to treat the studied types of wastewaters.  相似文献   

14.
The recently proposed DEAMOX (DEnitrifying AMmonium OXidation) process combines the anammox reaction with autotrophic denitrifying conditions using sulphide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. This paper firstly presents a feasibility study of the DEAMOX process using synthetic (ammonia + nitrate) wastewater where sulphide is replaced by volatile fatty acids (VFA) as a more widespread electron donor for partial denitrification. Under the influent N-NH+4/N-NO3(-) and COD/N-NO3(-) ratios of 1 and 2.3, respectively, the typical efficiencies of ammonia removal were around 40% (no matter whether a VFA mixture or only acetate were used) for nitrogen loading rates (NLR) up to 1236 mg N/l/d. This parameter increased to 80% by increasing the influent COD/N-NO3(-) ratio to 3.48 and decreasing the influent N-NH4 +/N-NO3(-) ratio to 0.29. As a result, the total nitrogen removal increased to 95%. The proposed process was further tested with typical strong nitrogenous effluent such as reject water (total N, 530-566 mg N/l; total COD, 1530-1780 mg/l) after thermophilic sludge anaerobic digestion. For this, the raw wastewater was split and partially ( approximately 50%) fed to a nitrifying reactor (to generate nitrate) and the remaining part ( approximately 50%) was directed to the DEAMOX reactor where this stream was mixed with the nitrified effluent. Stable process performance up to NLR of 1,243 mg N/l/d in the DEAMOX reactor was achieved resulting in 40, 100, and 66% removal of ammonia, NOx(-), and total nitrogen, respectively.  相似文献   

15.
The present study investigated mesophilic anaerobic treatment of sulphate-containing wastewater in EGSB reactors and assessed the inclusion of nitrite in the reactor influent as a method for control of biological sulphate reduction. Two EGSB reactors, R1 and R2, were operated for a period of 581 days at varying volumetric loading rates, COD/SO4(2-) ratios and influent nitrite concentrations (R2 only). COD removal efficiencies of > 93% were achieved in both reactors at influent sulphate concentrations of up to 3,000 mg l(-1). A two-fold increase in the influent sulphate concentration, giving an influent COD/SO4(2-) ratio of 2, resulted in a reduction in reactor COD removal efficiency to 84% and 89%, in R1 and R2, respectively. Despite inclusion of nitrite in the R2 influent at concentrations up to 500 mg NO2-N l(-1), sulphate reduction proceeded similarly in R2 and R1, suggesting the ineffectiveness of nitrite as a potential inhibitor of SRB  相似文献   

16.
A novel technology suitable for centralised and decentralised wastewater treatment has been developed, extensively tested at laboratory-scale, and trialled at a number of sites for populations ranging from 15 to 400 population equivalents (PE). The two-reactor-tank pumped flow biofilm reactor (PFBR) is characterised by: (i) its simple construction; (ii) its ease of operation and maintenance; (iii) low operating costs; (iv) low sludge production; and (v) comprising no moving parts or compressors, other than hydraulic pumps. By operating the system in a sequencing batch biofilm reactor (SBBR) mode, the following treatment can be achieved: 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total suspended solids (TSS) reduction; nitrification and denitrification. During a 100-day full-scale plant study treating municipal wastewater and operating at 165 PE and 200 PE (Experiments 1 and 2, respectively), maximum average removals of 94% BOD5, 86% TSS and 80% ammonium-nitrogen (NH4-N) were achieved. During the latter part of Experiment 2, effluent concentrations averaged: 14 mg BOD5/l; 32 mg COD(filtered)/l; 14 mg TSS/l; 4.4 mg NH4-N/l; and 4.0 mg NO3-N/l (nitrate-nitrogen). The average energy consumption was 0.46-0.63 kWh/m3(treated) or 1.25-1.76 kWh/kg BOD5 removed. No maintenance was required during these experiments. The PFBR technology offers a low energy, minimal maintenance technology for the treatment of municipal wastewater.  相似文献   

17.
The airlift reactor technology has been successfully applied at full scale for both COD and nitrogen removal. In this study, the results of the biofilm development and biological performance of two full scale reactors are discussed. At Paulaner Brewery in Munich, the airlift reactor was applied for COD and ammonia removal of anaerobically treated wastewater. In the other case the airlift reactor was applied as a pretreatment of nitrogen removal by the Anammox process. Water from a Tannery company in Lichtenvoorde in the Netherlands, The Hulshof Royal Dutch Tanneries, was pretreated anaerobically for COD removal and aerobically to remove the sulphides as sulphur. In an airlift reactor the ammonia was partially oxidised to nitrite. In both cases the granular biomass developed well; the concentrations amounted to 250 microl/L and 500 ml/L respectively. In the first case, 4 kg/m(3)/day of COD was removed, the soluble concentration of COD was less than 250 mg/L. The nitrification to nitrate was nearly complete and amounted to 0.5 kg NH4-N/m(3)/day. In the second application, 50% of the ammonia (on average 0.45 kg N/m3/d) was nitrified to nitrite. This process was easily controlled by regulating the amount of air according to the nitrite and ammonia concentrations in the effluent. It can be concluded that in both cases the particular processes were very stable and easy to operate.  相似文献   

18.
ABR工艺在处理垃圾渗滤液中具有其他厌氧生物反应器所达不到的优点。尤其是对B/C低、氨氮浓度高、COD浓度高的废水处理,通过调节回流比、HRT、碱度等参数后,可以取得很好的处理效果。在本次实验中,HRT控制在18h后明显提高的垃圾渗滤液的可生化性及C/N,使ABR出水CODcr去除率达到75%,C/N为6.72,对后续好氧反应起到了重要作用。在调控一定回流比后,为提供厌氧氨氧化所需的电子受体NO-3和NO-2实现脱氮。反应器在经过120d的培养驯化,氨氮进水为460mg/L,ABR对氨氮的去除率稳定在80%。不同格室的厌氧颗粒污泥都得到很好的驯化并在其合适的环境中发挥各自的功能。  相似文献   

19.
林可霉素高浓度有机废水处理技术   总被引:1,自引:0,他引:1  
王冰 《水资源保护》2008,24(4):53-57
采用厌氧颗粒和好氧活性污泥分别对内循环厌氧反应器(IC)和间歇式活性污泥法(SBR)进行污泥接种培养,研究水解酸化-IC-SBR工艺在林可霉素生产废水处理方面的运行效果。结果表明:在进水COD的质量浓度为6 000~9 000 mg/L,IC和SBR反应器中有机负荷分别为0.82 kg/(kg.d)和0.26 kg/(kg.d)左右的情况下,IC和SBR反应器分别运行60 d和7 d,COD平均去除率分别达到91%和61%,出水COD的质量浓度在300 mg/L以下,达到GB 8978—1996《污水综合排放标准》二级标准。  相似文献   

20.
A two-stage entrapped mixed microbial cell ((2S)EMMC) process which separates nitrification and denitrification phases by the installation of the anoxic and oxic EMMC reactors packed with EMMC carriers was operated with 6, 4, 3, and 2 hours of hydraulic retention time (HRT) using simulated domestic wastewater. The activated sludge was immobilized using cellulose acetate for the EMMC carriers. Similar soluble chemical oxygen demand (SCOD) removal efficiencies of 90-97% were observed for all HRTs (SCOD loading rate of 0.84-2.30 g/L/d) applied. In order to achieve more than 80% of TN removal efficiency, the HRT should be maintained higher than 4 hours (less than 0.24 g/L/d of TN loading rate). Denitrification was a rate-limiting step which controlled overall TN removal efficiency at TN loading rate of 0.15-0.31 g/L/d although nitrification efficiencies achieved 97-99%. The effluent TSS of less than 25 mg/L in the (2S)EMMC process was maintained at the SCOD loading rate of less than 1.23 g/L/d with back-washing intervals of 5 and 10 days in the anoxic and oxic EMMC reactors, respectively. The minimum HRT of 4 hours is required for high removal efficiencies of organics (average 95.6%) and nitrogen (average 80.5%) in the (2S)EMMC process with 3 times of recirculation ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号