首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
代荣霞  李兰  李允鲁 《人民长江》2008,39(16):25-26
水库尤其是高坝大库的兴建会使水温产生较明显的垂向分层,垂向水温的分层计算能够确定出水库下泄水温,进而较准确评价河道的水温变化.构建了"人工神经网络模型+统计法+朱伯芳法"综合预测模型计算水库垂向水温分层,以漫湾水库为研究对象对模型进行了检验.结果表明模型结构是合理的,所有月份和所有垂向断面计算水温与实测水温的相对误差均小于8%,模型用于预测水库坝前垂向水温分布是可行的.  相似文献   

2.
大型分层型水库下泄水温对取水高程敏感性分析研究   总被引:3,自引:1,他引:2  
为分析下泄水温随取水高程变化规律,探讨分层型水库下泄水温的敏感性,结合丰满水电站,建立了全三维水动力-水温耦合数学模型,并同时开展了物理模型实验,计算结果与实验结果进行了相互验证。对取水水头16.0~25.0 m下取水水温进行预测研究,结果表明:大型分层型水库下泄水温不仅与上游取水高程有关,还取决于坝前库区取水层水温垂向分布;随着取水水头的降低,下泄水温逐渐升高,而增幅表现出逐渐减小,且该变化规律与坝前取水层水温垂向梯度无关;当老坝缺口拆除高程大于240.0 m时,下泄水温受老坝缺口拆除高程影响有限;大型分层型水库取水水头建议取16.0~18.0 m,但该结论仅根据单一工程研究得出,其通用性尚需要根据其他工程进一步研究验证。  相似文献   

3.
泥沙异重流影响下的水库垂向水温分布预测模拟   总被引:2,自引:1,他引:1  
水库水体异重流的变化是影响水库水温分布最为关键的因素之一。本文以黄河上游刘家峡水库为例,建立考虑泥沙异重流影响的三维水库水温模型,利用已有水库水温分布监测数据对模型进行验证。在考虑有无泥沙异重流影响的条件下,对水库汛期库区垂向水温分布进行预测和比较。模拟结果显示,在不考虑来流含沙时,库区垂向水温分布始终为典型分层型,按实际含沙来流计算时,库区垂向水温分布随着水沙量增大而呈现从分层型转化为混合型分布的变化,泥沙异重流是造成夏季水库水温成混合型的主要原因,只有考虑泥沙异重流的影响才能正确预测多沙河流上水库水温的变化规律。  相似文献   

4.
黄石盘水库工程是一座近期建设的大(Ⅱ)型防洪控制性水库工程。预测评价黄石盘水库地表水环境的影响,其中包括对水温的影响研究。采用立面二维水温模型对水温进行预测,计算坝前垂向水温分布、下泄水温、坝下河道水温。预测结果表明,该水库水温结构为过渡型,且在丰、平、枯典型水文年运行时均对下游水温存在明显的低温水效应。结合库区流场分析,提出本工程采用分层取水措施来减缓下泄低温水的影响。经过分层取水后可满足作物要求温度,基本不影响作物正常生长。  相似文献   

5.
为探讨热带地区水库水温分层特征,采用垂向一维水温数学模型对海南省南渡江干流某拟建大型水库开展了水库垂向热分层结构和下泄水温过程研究,并探讨了叠梁门分层取水措施对低温水的改善效果。研究结果表明:①受水库湖泊特性和气候特征影响,海南热带地区水库水温总体也呈现随季节变化的分层结构,在冬季水温趋于同温,夏季水温分层逐渐加强且显著,年内垂向最大温差可达11.8℃,由于海南主汛期为9~10月,汛后水库蓄热能力明显减弱。②水库下泄水温呈现低温水明显、高温水较弱的规律,最大降幅9.7℃,最大升幅仅为1.0℃。③叠梁门分层取水措施的运用,加强了水库垂向分层状态,对低温水的改善效果显著,最大低温水影响降低为2.3℃。  相似文献   

6.
紫坪铺水库水温预测研究   总被引:11,自引:0,他引:11  
采用立面二维κ-ε水温模型对紫坪铺水库水温进行了预测,结果显示水库在全年都处于分层状态。2月垂向温差最小,约为1.5℃,7月和8月分层最明显,垂向温差最大,可达17℃.水库下泄水温过程明显改变,有明显的滞温现象.由于库区水温结构和下游水温过程都有明显的改变,库区和下游生态环境可能会受到影响.  相似文献   

7.
统计资料表明,通过设置分层取水设施,控制取水区域,能够有效提高下泄水温。文中通过建立三维水温数学模型,分别针对丰水年、平水年及枯水年典型月份水温垂向分布,进一步研究叠梁门分层取水进水口的取水水温与取水高程之间的关系,论证分层取水的效果。  相似文献   

8.
汾河水库作为山西最大的综合利用水库,科学地预测水库的水温分布结构和采取相应的温控措施,具有重大的工程意义。文中利用现场观测和数值模拟两种方法对汾河水库水温分布进行预测分析,实测值不仅为水温预测提供了基础数据,而且验证了数学模型的适用性。数值模拟的结果表明,汾河水库属于分层型水库,夏冬季节呈典型的分层状态,冬季下泄水温保持在4℃左右,而春秋两季受季节交替的影响,水库水温处于翻滚状态,在垂向上呈现混合。  相似文献   

9.
不完全年调节水库在运行过程中将引起水库水温结构变化,探明水库下泄水温规律及下游河道水温响应具有重要意义。以红山水库为研究对象,在水库水温结构判定基础上,采用Sobek软件及河道一维水温模型,预测红山水库坝前垂向水温分布情况,并对水库下泄水温及河道沿程水温恢复情况进行预测,为分析红山水库低温水对下游农业灌溉影响提供科学依据。  相似文献   

10.
分层型水库垂向水温分布模型解析解研究   总被引:1,自引:0,他引:1  
祝东亮  李兰  杨梦斐 《人民长江》2010,41(15):67-70
分层型水库垂向水温计算常采用垂向水温分布模型的数值解法或经验公式法,数值解法计算工作量较大,经验公式法简便但不能随便移植使用。在Huber和Harleman建立的垂向一维水库水温模型的基础上,简化模型结构和部分参数,推导出垂向一维水库水温分布模型解析解,并用二滩水库的实测水温资料验证了解析解,得到了较好的效果。提出的垂向一维水库水温分布模型解析解法可用于深水型水库垂向水温分布预测。  相似文献   

11.
任实  刘亮  张地继  杨霞 《人民长江》2018,49(3):32-35
梯级水库蓄水运行后,改变了河流的天然水流情势和水体的年内热量分配,水库内的水温分布特性随之变化。为了解溪洛渡-向家坝-三峡梯级水库蓄水运行后河道水温分布特征,对梯级水库沿程19个断面水温进行了观测,并根据观测资料系统地分析了梯级水库进出库水温和沿程水温分布,以及垂向温度分布变化情况。研究结果表明:溪洛渡、向家坝、三峡梯级水库的下泄水温在降温季节略有增加,在升温季节略有下降,形成了"高温不高,低温不低"的平坦化现象;溪洛渡和向家坝水库坝前区域在垂向上均出现明显的温度分层,而三峡水库近坝区的温度分层现象在梯级水库运行后明显减弱,近几年表层和底层水温相差最大值仅为2.5℃。研究结果可为梯级水库联合调度、水生态研究、水库水温数学模型验证等提供参考。  相似文献   

12.
松涛水库水温数值模拟研究   总被引:1,自引:0,他引:1  
为研究热带地区湖泊型水库水温分布规律,以海南省松涛水库为研究对象,采用垂向一维水温模型——DYRESM模拟水温分布,探究该水库水温结构及垂向水温年内演变规律。经分析可知:松涛水库水温呈显著的稳定分层结构,水温垂向分布具有明显的季节性;6、7月平均水温最高,2月最低,水深40 m处至库底水体水温不随时间改变,常年保持在19℃左右;全年内,水库表层水温均高于入流水温和当地气温;入库流量猛增时会导致水库水温出现双温跃层结构。  相似文献   

13.
为研究大型水库热分层期间水质的响应特征及成因,于2018年4月—2018年12月对大黑汀水库坝前水体的水温及溶解氧等理化指标进行了连续性垂向监测,在此基础上分析了大黑汀水库季节性热分层变化规律以及各水质指标的响应特征。结果表明:(1)大黑汀水库水体呈典型的单循环混合模式,热分层期间,溶解氧在垂向分布同样表现出季节性变化,且在水体底部出现严重的缺氧现象,但在形成时间上比热分层略有迟滞;(2)氨氮、总磷、磷酸盐以及铁、锰浓度表现为底层 > 中层 > 表层的变化趋势。研究表明,水体热分层会改变水体中溶解氧的垂向分布结构,并进一步导致沉积物向上覆水体释放大量的氮、磷营养盐以及铁、锰等污染物,对水库的正常运行和管理产生不利影响。  相似文献   

14.
翻库对分层水库的水生态环境具有重要意义。通过在大型深水水库潘家口水库的原位监测结合垂向二维水动力-水质-水生态模型对翻库特性及溶解氧(DO)响应进行研究,分别对2018和2020年的水环境过程进行模拟。结果显示,水温分层导致了DO垂向分层,表层DO与气温相关性强,底层DO在分层后持续下降至0,秋季翻转是底层复氧的主要途径。2018年平均运行水位较2020年高14.2 m,表层温水层最大厚度2018年比2020年增加了近10 m,水库翻库从库尾逐渐向坝前推进。在库尾到坝前的距离约30 km的水域,2018年翻库的历经时间比2020年缩短40 d,坝前DO的垂向均匀时间滞后于水温7~10 d。水库水位较低时,翻库产生的表层水体DO下降幅度更大,降幅为3~4 mg/L。分别对水库不同断面可用势能指数(APE)对分层稳定性的过程进行分析,水库在不同年份和不同位置断面的翻库日期与夏季混合循环期的平均APE指数大小具有较好的相关关系。研究为探求大型深水分层水库水环境演变规律,科学合理进行调度提供理论基础。  相似文献   

15.
准确模拟和预测水库及下游河道的水温分布规律对降低水电工程环境影响起着重要作用。基于MIKE系列软件,采用一维水温模型对怒江中下游天然河道水温进行数值模拟计算,并在对怒江规划龙头马吉水库的水温类型进行判别的基础上,运用库区立面二维水温模型对库区及下泄水温变化进行预测。计算结果表明,马吉水库为典型温度分层型水库,来水量越大,表层水温越低,底层水温越高。水库建成后,下泄水温过程与天然河道水温过程差异加大。上述研究可为在水电工程运行中采取措施应对水温变化提供技术支撑。  相似文献   

16.
孔勇  邓云  脱友才 《人民长江》2017,48(10):97-102
针对现有垂向一维水温模型研究中缺少对模型关键参数和边界条件敏感性的系统分析,以东江水库为例,开展了垂向一维模型在湖泊型水库水温模拟中的适用性研究。研究结果表明:东江水库库区斜温层变化主要受气象条件控制,年内下泄水温过程稳定,模型能够较好模拟出垂向水温结构演变及下泄水温过程特征,与实测结果吻合良好;表层水温计算对水气热通量参数较为敏感,垂向扩散系数是影响垂向水温结构模拟的关键参数;同时,不同精度系列的气象过程不改变水库的整体热量收支,对水温结构基本无影响。  相似文献   

17.
东勘院法是在总结新安江、新丰江等水库水温分布规律基础上,经统计分析得出的常用于计算水库垂向月均水温的经验公式。该方法用于计算其他区域不同类型水库水温时,存在一定的偏差:一是1~3月垂向水温存在不合理的温跃层;二是对于水深大于40 m的水库,总是出现一个滞温层,温跃层和滞温层的交界面基本分布在水深40 m左右。为减小计算偏差,本研究通过分析东勘院法主要参数n、x取值对计算结果的影响,对参数n、x的取值进行了优化改进。通过国内多个水库水温资料验证,表明:改进后的东勘院法可明显提高水温预测精度。  相似文献   

18.
Simulation of water temperature distribution in Fenhe Reservoir   总被引:1,自引:0,他引:1  
In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.  相似文献   

19.
The dynamics of water temperature, dissolved oxygen and total dissolved solids concentrations in Aguamilpa Reservoir was analysed by considering horizontal and water column variations. The reservoir model, CE‐QUAL‐W2, was used to simulate the temporal variations calibrated with data gathered every 2 months from June 2008 to June 2009. Temperature depth profiles indicated a typical asymmetry of reservoirs exhibiting a large stratification in the lower part near the dam. Dissolved oxygen concentration profiles exhibited some degree of anoxia in the bottom water during the rainy season (May through October). This is most likely due to decomposition vegetation and organic matter via soil erosion and run‐off from the basin accumulating at the bottom of the reservoir. The reservoir stratification is clearly seasonal, occurring during the rainy season, especially in the lowest reservoir zones. The CE‐QUAL‐W2 model results provided a comprehensive understanding of the temporal behaviour of the study variables during the modelling study period. Application of this water quality model is directed to water resource managers to help them better understand the dynamics of physico‐chemical processes, and how they vary temporally and spatially in the reservoir, and to propose the best management practices for preserving or improving the water quality of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号