首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Agriculture in the Mediterranean region is constrained by limited water resources and in many countries irrigation demand exceeds the renewable water supply. This paper presents a comprehensive approach to (a) quantify the consumptive green (soil moisture provided by precipitation) and blue (irrigation) water use for crop production, (b) distinguish the contribution of groundwater to irrigation supply and (c) estimate groundwater over-abstraction. A spatiotemporally explicit soil water balance model, based on the FAO-56 dual crop coefficient approach, which includes the computation of evaporation losses of the different irrigation systems, was applied to the 5,760-km2 area of the Republic of Cyprus for the agro-meteorological years 1995–2009. The model uses national agricultural statistics, community-level data from the agricultural census and daily data from 34 meteorological stations and 70 precipitation gauges. Groundwater over-abstraction is quantified per groundwater body, based on the sustainable abstraction rates specified in the Cyprus River Basin Management Plan, as prepared for the EU Water Framework Directive. It was found that, on average, total agricultural water use was 506 Mm3/year, of which 62 % is attributed to green water use and 38 % to blue water use. Groundwater contributed, on average, 81 % (151 Mm3/year) to blue water use and exceeded the recommended abstraction rates by 45 % (47 Mm3/year). Even though the irrigated area decreased by 18 % during the 2008 drought year, relative to the wettest year (2003), total blue water use decreased by only 1 %. The limited surface water supply during the driest year resulted in a 37 % increase in groundwater use, relative to the wettest year, and exceeded the sustainable abstraction rate by 53 % (55 Mm3/year). Overall, the model provides objective and quantitative outcomes that can potentially contribute to the improvement of water resource management in Mediterranean environments, in the light of climate change and expected policy reforms.  相似文献   

2.
The canal water supply, which is the only source of irrigation, in the rice-dominated cropping system of the Hirakud canal command (eastern India) is able to meet only 54 % of the irrigation demand at 90 % probability of exceedance. Hence, considering groundwater as the supplemental source of irrigation, conjunctive use management study by combined simulation-optimization modelling was undertaken in order to predict the maximum permissible groundwater pumpage from the command area. Further, optimal land and water resources allocation model was developed to determine the optimal cropping pattern for maximizing net annual return. The modelling results suggested that 2.0 and 2.3 million m3 of groundwater can be pumped from the bottom aquifer during monsoon and non-monsoon seasons, respectively, at 90 % probability of exceedance of rainfall and canal water availability (PERC). Optimal cropping patterns and pumping strategies can lead to about 51.3–12.5 % increase in net annual return from the area at 10–90 % PERC. The sensitivity analysis of the model indicates that the variation in the market price of crops has very high influence on the optimal solution followed by the cost of cultivation and cultivable area. Finally, different future scenarios of land and water use were formulated for the command area. The adoption of optimal cropping patterns and optimal pumping strategies is strongly recommended for sustainable management of available land and water resources of the canal command under hydrological uncertainties.  相似文献   

3.
Water demand for irrigated agriculture is increasing against limited availability of fresh water resources in the lower reaches of the Amu Darya River e.g., Khorezm region of Uzbekistan. Future scenarios predict that Khorezm region will receive fewer water supplies due to climate change, transboundary conflicts and hence farmers have to achieve their yield targets with less water. We conducted a study and used AquaCrop model to develop the optimum and deficit irrigation schedule under shallow groundwater conditions (1.0–1.2 m) in the study region. Cotton being a strategic crop in the region was used for simulations. Capillary rise substantially contributes to crop-water requirements and is the key characteristic of the regional soils. However, AquaCrop does not simulate capillary rise contribution, thereby HYDRUS-1D model was used in this study for the quantification of capillary rise contribution. Alongside optimal irrigation schedule for cotton, deficit strategies were also derived in two ways: proportional reduction from each irrigation event (scenario-A) throughout the growth period as well as reduced water supply at specific crop growth stages (scenario-B). For scenario-A, 20, 40, 50 and 60 % of optimal water was deducted from each irrigation quota whereas for scenario-B irrigation events were knocked out at different crop growth stages (stage 1(emergence), stage 2 (vegetative), stage 3 (flowering) and stage 4 (yield formation and ripening)). For scenario-A, 0, 14, 30 and 48 % of yield reduction was observed respectively. During stress at the late crop development stage, a reduced water supply of 12 % resulted in a yield increase of 8 %. Conversely, during stress at the earlier crop development stage, yield loss was 17–18 %. During water stress at the late ripening stage, no yield loss was observed. Results of this study provide guidelines for policy makers to adopt irrigation schedule depending upon availability of irrigation water.  相似文献   

4.
One of typical problems in water resources system modeling is derivation of optimal operating policy for reservoir to ensure water is used more efficiently. This paper introduces optimization analysis to determine monthly reservoir operating policies for five scenarios of predetermined cropping patterns for Koga irrigation scheme, Ethiopia. The objective function of the model was set to minimize the sum of squared deviation (SSD) from the desired targeted supply. Reservoir operation under different water availability and thresholds of irrigation demands has been analyzed by running a chance constraint nonlinear programming model based on uncertain inflow data. The model was optimized using Microsoft Excel Solver. The lowest SSD and vulnerability, and the highest volumetric reliability were gained at irrigation deficit thresholds of 20 % under scenario I, 30 % under scenario II, III and V, and at 40 % under scenario IV when compensation release is permitted for downstream environment. These thresholds of deficits could be reduced by 10 % for all scenarios if compensation release is not permitted. In conclusion the reservoir water is not sufficient enough to meet 100 % irrigation demand for design command areas of 7,000 ha. The developed model could be used for real time reservoir operation decision making for similar reservoir irrigation systems. In this specific case study system, attempt should be made to evaluate the technical performance of the scheme and introduce a regulated deficit irrigation application.  相似文献   

5.
In this paper, a modeling framework by combining system dynamic (SD) model and optimal allocation model was developed to study water resources vulnerability and optimal water use structure, and the framework was applied in the middle reaches of Heihe River basin, northwest of China. The SD model could describe the dynamical change of water resources vulnerability by integrating water resources with socio-economic effect. The sensitivity analysis of SD model was then conducted to design appropriate scenarios for finding out the optimal development pattern, and based on which, an integrated water-saving scenario with lower water resources vulnerability was identified for optimization modeling. Then, an inexact fuzzy-parameter two-stage programming (IFTSP) model was developed and applied to optimize water use structure among industries under uncertainties. This study addresses the water resources vulnerability analysis in considering both water resources system and socio-economic system. Water resources vulnerability analysis was combined with optimization model to make adaptive water resources management plans. And the optimal allocation schemes under lower water resources vulnerability are more advantageous for regional sustainable development.  相似文献   

6.
The paper assessed the sensitivity of an integrated hydro-economic model, to provide a quantitative range of uncertainty in the impacts of climate change on water balance components and water use in the agricultural sector of Apulia region located in a semi-arid Mediterranean climate area in southern Italy. Results show that the impacts of climate change are expressed in the future by an increase in the net irrigation requirements (NIRs) of all crops. Total cultivated land is reduced by 8.5 % in the future, and the percentage of irrigated land decreases from 31 to 22 % of total agricultural land. Reduction in the irrigated land, together with the variation in the cropping pattern and the adoption of the different irrigation techniques, led to a decrease in water demand for irrigation across the entire region. The sensitivity analysis shows that the groundwater recharge has the lowest correlation to climatic parameters. Results are addressed to the scientific community and decision makers to support the design of adequate adaptation policies for efficient water management under the severe drought conditions that are likely to occur in the region according to climate change projections.  相似文献   

7.
Multi-purpose reservoir development have been always a big challenge for the management of water resources. This paper describes an integrated approach for investigating catchment hydrology in the development of a hydropower and a canal irrigation system based on model analyses. The investigation aims to adequately determine an optimal domestic and irrigation water resources allocation scheme based on an assessment of the reservoir water balance and capacity for hydropower. The soil and water assessment tool (SWAT) which characterizes basin hydrology and the water management and planning model MODSIM which provides a decision support system for water allocation optimization, were used in this study. The integrated approach was applied to Prek Te River basin in Cambodia. The water demand aspect was examined based on domestic water use, irrigation water, environmental flow, and water losses. An operational rule curve was developed for hydropower operation with respect to a power potential of 13 MW. Hydrologic modeling revealed 90 % dependable water of about 2.7 m3/s during the dry season and 214.3 m3/s during the wet season, indicative of a wet-season dependent reservoir for storage. Results from the 26-years simulation period also showed that diversions for domestic water and irrigation water supply were 92.3 % dependable for a 13 MW capacity hydropower development. The integrated approach was shown to be a valuable decision support tool for water resources management with the determination of an optimum policy for multi-purpose reservoir operation based on available basin water supply.  相似文献   

8.
In arid and semi-arid countries, the use of irrigation is essential to ensure agricultural production. Irrigation water use is expected to increase in the near future due to several factors such as the growing demand of food and biofuel under a probable climate change scenario. For this reason, the improvement of irrigation water use efficiency has been one of the main drivers of the upgrading process of irrigation systems in countries like Spain, where irrigation water use is around 70 % of its total water use. Pressurized networks have replaced the obsolete open-channel distribution systems and on farm irrigation systems have been also upgraded incorporating more efficient water emitters like drippers or sprinklers. Although pressurized networks have significant energy requirements, increasing operational costs. In these circumstances farmers may be unable to afford such expense if their production is devoted to low-value crops. Thus, in this work, a new approach of sustainable management of pressurized irrigation networks has been developed using multiobjective genetic algorithms. The model establishes the optimal sectoring operation during the irrigation season that maximize farmer’s profit and minimize energy cost at the pumping station whilst satisfying water demand of crops at hydrant level taking into account the soil water balance at farm scale. This methodology has been applied to a real irrigation network in Southern Spain. The results show that it is possible to reduce energy cost and improve water use efficiency simultaneously by a comprehensive irrigation management leading, in the studied case, to energy cost savings close to 15 % without significant reduction of crop yield.  相似文献   

9.

Water demand in irrigation is expected to increase in the near future, and it will be seriously impacted by climate change, specifically in semi-arid areas. The increase of water demand, along with the reduction of water availability, can seriously intensify the frequency and magnitude of pressure deficits in pressurized irrigation networks, with dangerous consequences on the healthy crop growth and on the crop production. In this framework, the present paper investigates the contribution of a network of smart control valves, named GreenValve System (GVS, patented by the Politecnico di Milano), to improve the management of a pressurized irrigation system. The GVS is able to recover energy for its operation from the flow, to be remotely commanded and to introduce management logics based on real-time data in order to create a stand-alone real-time monitoring and control network. In the paper, specifically, a three-step general and replicable methodological approach for the definition of installation and operating conditions for these valves is proposed. The effectiveness of a specific management logic, allowed by the use of the GVS, to limit pressure deficit and failure occurrence in the network is discussed. Reference is made to a case study on a critical on-demand irrigation network. The results showed that the introduction of simple management rules can reduce and even avoid the occurrence of hydrant failure, creating the conditions for more effective use of the resources.

  相似文献   

10.
The most difficult water resources management challenge in the Ganges Basin is the imbalance between water demand and seasonal availability. More than 80 % of the annual flow in the Ganges River occurs during the 4-month monsoon, resulting in widespread flooding. During the rest of the year, irrigation, navigation, and ecosystems suffer because of water scarcity. Storage of monsoonal flow for utilization during the dry season is one approach to mitigating these problems. Three conjunctive use management strategies involving subsurface water storage are evaluated in this study: Ganges Water Machine (GWM), Pumping Along Canals (PAC), and Distributed Pumping and Recharge (DPR). Numerical models are used to determine the efficacy of these strategies. Results for the Indian State of Uttar Pradesh (UP) indicate that these strategies create seasonal subsurface storage from 6 to 37 % of the yearly average monsoonal flow in the Ganges exiting UP over the considered range of conditions. This has clear implications for flood reduction, and each strategy has the potential to provide irrigation water and to reduce soil waterlogging. However, GWM and PAC require significant public investment in infrastructure and management, as well as major shifts in existing water use practices; these also involve spatially-concentrated pumping, which may induce land subsidence. DPR also requires investment and management, but the distributed pumping is less costly and can be more easily implemented via adaptation of existing water use practices in the basin.  相似文献   

11.
Long term water demand forecasting is needed for the efficient planning and management of water supply systems. A Monte Carlo simulation approach is adopted in this paper to quantify the uncertainties in long term water demand prediction due to the stochastic nature of predictor variables and their correlation structures. Three future climatic scenarios (A1B, A2 and B1) and four different levels of water restrictions are considered in the demand forecasting for single and multiple dwelling residential sectors in the Blue Mountains region, Australia. It is found that future water demand in 2040 would rise by 2 to 33 % (median rise by 11 %) and 72 to 94 % (median rise by 84 %) for the single and multiple dwelling residential sectors, respectively under different climatic and water restriction scenarios in comparison to water demand in 2010 (base year). The uncertainty band for single dwelling residential sector is found to be 0.3 to 0.4 GL/year, which represent 11 to 13 % variation around the median forecasted demand. It is found that the increase in future water demand is not notably affected by the projected climatic conditions but by the increase in the dwelling numbers in future i.e. the increase in total population. The modelling approach presented in this paper can provide realistic scenarios of forecasted water demands which would assist water authorities in devising appropriate management strategies to enhance the resilience of the water supply systems. The developed method can be adapted to other water supply systems in Australia and other countries.  相似文献   

12.
利用系统工程的思想,建立灌区水资源需水计算的数字模拟模型,并对都江堰灌区水资源开发利用现状及灌区水资源供需平衡进行了分析。以都江堰灌区为例,将灌区分为若干子区,分析该流域的供水能力、供需现状及供需发展情况。讨论各规划水平年水源工程和解决分区内水资源紧缺问题。  相似文献   

13.
The data envelopment analysis (DEA) model was used to estimate the technical efficiency (TE) scores, the Malmquist total factor productivity (TFP) indices, and their implicit input shadow shares for 12 irrigation districts in Southern Alberta using data for the period 2008–12. The main purpose was to establish benchmarks so that future increases in conservation, efficiency and total factor productivity of water use (major goals of Alberta’s Water for Life strategy) can be assessed. Results of an input-oriented DEA model indicated that the irrigation districts were, on average, 84.3 % technically efficient in their input use, primarily the net water diverted. The output-oriented model indicated that the irrigation districts, alternatively, could expand their total irrigated areas by 58.3 % with the current level of input use. Over the period 2008–12, the year-to-year mean Malmquist TFP for the irrigation districts of Southern Alberta was estimated to be 0.98 %. Net water diverted was identified as the most important contributing input (76 %) to the TFP change. The second and third contributing factors were pivot irrigation technology (6 %) and precipitation (5 %).  相似文献   

14.
Water resource managers are required to develop comprehensive water resources plans based on severely uncertain information of the effects of climate change on local hydrology and future socio-economic changes on localised demand. In England and Wales, current water resources planning methodologies include a headroom estimation process separate from water resource simulation modelling. This process quantifies uncertainty based on only one point of an assumed range of deviations from the expected climate and projected demand 25 years into the future. This paper utilises an integrated method based on Information-Gap decision theory to quantitatively assess the robustness of various supply side and demand side management options over a broad range of plausible futures. Findings show that beyond the uncertainty range explored with the headroom method, a preference reversal can occur, i.e. some management options that underperform at lower uncertainties, outperform at higher levels of uncertainty. This study also shows that when 50 % or more of the population adopts demand side management, efficiency related measures and innovative options such as rainwater collection can perform equally well or better than some supply side options The additional use of Multi-Criteria Decision Analysis shifts the focus away from reservoir expansion options, that perform best in regards to water availability, to combined strategies that include innovative demand side management actions of rainwater collection and greywater reuse as well efficiency measures and additional regional transfers. This paper illustrates how an Information-Gap based approach can offer a comprehensive picture of potential supply/demand futures and a rich variety of information to support adaptive management of water systems under severe uncertainty.  相似文献   

15.
Climate change and drought phenomena impacts have become a growing concern for water resources engineers and policy makers, mainly in arid and semi-arid areas. This study aims to contribute to the development of a decision support tool to prepare water resources managers and planners for climate change adaptation. The Hydrologiska Byråns Vattenbalansavdelning (The Water Balance Department of the Hydrological Bureau) hydrologic model was used to define the boundary conditions for the reservoir capacity yield model comprising daily reservoir inflow from a representative example watershed with the size of 14,924 km2 into a reservoir with the capacity of 6.80 Gm3. The reservoir capacity yield model was used to simulate variability in climate change-induced differences in reservoir capacity needs and performance (operational probability of failure, resilience, and vulnerability). Owing to the future precipitation reduction and potential evapotranspiration increase during the worst case scenario (?40% precipitation and +30% potential evapotranspiration), substantial reductions in streamflow of between ?56% and ?58% are anticipated for the dry and wet seasons, respectively. Furthermore, model simulations recommend that as a result of future climatic conditions, the reservoir operational probability of failure would generally increase due to declined reservoir inflow. The study developed preparedness plans to combat the consequences of climate change and drought.  相似文献   

16.
Abstract

Water use assessments are a necessary prerequisite for sustainable water resources management and planning in river basins, federal states, or countries. For reasons of transparency, flexibility, ease of update, and the possibility to generate scenarios of future water use, such assessments are best carried out by applying a water use model. To support water resources planning in two federal states of semi-arid Northeastern Brazil, Ceará and Piauí, the regional-scale water use model NoWUM was developed. It computes withdrawal and consumptive water use for each of 332 municipalities, distinguishing five water use sectors: irrigation, livestock, households, industry, and tourism. The model is suited to simulate the impact of global change and of management measures on water demand. Using NoWUM, the present-day water use situation in Ceará and Piauí is assessed. In addition, the impact of inter-annual climate variability and long-term climate change on irrigation requirements is considered. Scarce and uncertain input data lead to a high level of uncertainty in the model results. It is likely that water use in the most important sector, irrigation, is underestimated, while industrial water use is possibly overestimated. With some modifications, NoWUM has the potential to be applied for water use assessments in other data-poor regions of the globe.  相似文献   

17.
Much of the world is facing water scarcity during one or the other part of the year. Hence, water resources management and optimal operation of water resources system take on added importance these days. This study introduces an improved version of krill algorithm for reservoir operation. The algorithm is based on adding an onlooker search mechanism to avoid being trapped in local optima and then updating its position. The new krill algorithm is tested using a case study for irrigation management. The computation time is 33 s for the new algorithm but is 54, 59, and 60 s for krill algorithm, particle swarm optimization and genetic algorithm, respectively. Also, the improved krill algorithm can meet 97% of irrigation demands and has the lowest value of vulnerability index among genetic algorithm, particle swarm optimization, and simple krill algorithm. Also, the average solution of improved krill algorithm is close to the global solution. Results indicate that the improved krill algorithm has high potential for application in water resource management.  相似文献   

18.
In this study, a water resources management model that facilitates indicator-based decisions with respect to environmental, social and economic dimensions is developed for the Gediz River Basin in Turkey. The basic input of the proposed model is the quantity of surface water that is greatly allocated to irrigation purposes; therefore, supply and demand interrelations in agricultural water use constitute the main focus of the study. The model has been applied under three different hydro-meteorological scenarios that reflect baseline as well as better and worse conditions of water supply and demand, not only to reach an assessment of water budget, but also to evaluate the impacts of proposed management alternatives under different conditions. The Water Evaluation and Planning (WEAP) software is used as a simulation and evaluation tool to assess the performance of possible management alternatives, which is measured by nine proposed indicators. The results of the study have indicated that the Gediz River Basin is quite sensitive to drought conditions, and the agricultural sector is significantly affected by irrigation deficits that increase sharply in drought periods. Even if the optimistic scenario is assumed to occur, it is not possible to observe a significant improvement in the water budget; however, the negative impacts of climate change can possibly exacerbate the water crisis. The indicators also verified that, efficient water management is crucial to ensure the sustainable use of water resources with respect to environmental, social and economic dimensions.  相似文献   

19.
The joint effect of changes in climate and land use on the future availability of water resources was assessed under the SRES A1B and A2 climate scenarios as well as five land use scenarios for the 2080–2100 time-frame in an Italian coastal watershed. The study area is a small coastal polder (100 km2) characterized by irrigated agriculture, urban expansion, drainage, quarrying and sensitivity to salt-water intrusion. The hydroclimatic budget and the GALDIT index have been computed for assessing water resources availability and groundwater vulnerability to salinization, respectively. The methodology developed is integrated into a tool based on Excel?, which supported the development of scenarios in participatory processes. The conclusions emerged from the analysis are the following: (1) climate change is more effective than land use change in controlling future freshwater availability and amplifies the imbalance between winter surplus and summer deficits, (2) freshwater availability in the summer will likely be affected by an increase in evaporation from open water surfaces due to increased temperature, whereas winter surplus would increase, (3) the vulnerability of the coastal aquifer to salinization will probably moderately increase but an inherent limitation of the GALDIT index to land use change parameters prevents a sound assessment. Strategies that may be proposed to administrators and stakeholders are based on increasing storage of seasonal water surplus.  相似文献   

20.
This study assesses evaporation losses from water reservoirs in the semi-arid Segura basin (south-east Spain), one of the most water stressed European catchments. These losses are evaluated from both the hydrologic and economic perspectives under different water availability scenarios that are based on water policy trends and climate change predictions. We take a multidisciplinary approach to the analysis, combining energy balance models to assess the effect of climate change on evaporation from water bodies, Class-A pan data and pan coefficients to determine evaporation loss on a regional scale, and non-linear mathematical programming modelling to simulate the economic impact of water use and allocation in the basin. Our results indicate that water availability could be reduced by up to 40 % in the worst-case scenario, with an economic impact in the 32–36 % range, depending on the indicator in question. The total annual evaporation loss from reservoirs ranges from 6.5 % to 11.7 % of the water resources available for irrigation in the basin, where evaporation from small reservoirs is more than twice that from large dams. The economic impact of such losses increases with water scarcity, ranging from 4.3 % to 12.3 % of the value of agricultural production, 4.0 % to 12.0 % of net margin, 5.8 % to 10.7 % of the irrigated area, and 5.4 % to 13.5 % of agricultural employment. Results illustrate the importance of evaporation losses from reservoirs in this region and the marked upward trend for future scenarios. Besides, they highlight the extent of the impact of climate change on future water resources availability and use in southern Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号