首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Single-stage Nitrogen removal using Anammox and Partial nitritation (SNAP) process was newly developed as an economical nitrogen removal process for ammonium rich wastewaters. The experimental studies for the evaluation of SNAP process were carried out using a novel biofilm reactor, in which hydrophilic net-type acryl fiber biomass carrier was applied. This SNAP reactor was operated under operational conditions of pH 7.5-7.7, 35 degrees C and DO 2-3 mg/L, and 60 to 80% of influent NH4-N was removed under loading rate of 0.48 kg-N/m3/d. Through the DNA analysis of the attached sludge, it was made clear that ammonium oxidizing bacteria (AOB) and anammox bacteria coexisted in the attach-immobilized sludge on the acryl fiber biomass carrier. Favorable conditions for the growth of anammox bacteria were created inside attach-immobilized nitrifying sludge. Two kinds of anammox bacteria and two kinds of AOB were detected in the SNAP sludge. Existence ratios of anammox and AOB were estimated to be 15% and 8.7%, respectively, based on the obtained clone numbers. This coexisting condition was confirmed by the FISH image of SNAP sludge and its confocal laser scanning microscope.  相似文献   

2.
Factors affecting cultivation of extremely slow-growing bacteria (anaerobic ammonium oxidiser, doubling time 11 days) were investigated by using upflow anaerobic sludge blanket (UASB) reactors which can maintain high solid retention time. The effects of concentrations of DO, free ammonia (FA), and nitrite on activation of anammox activity were tested during the start-up period. The reactor was inoculated with granular sludge collected from a full-scale UASB reactor used for treating brewery wastewater, and sludge from a piggery wastewater treatment plant and rotating biological contactor treating sewage. Results of continuous operation showed that concentrations of DO, free ammonia (FA) and nitrite in the reactors played a key role in stimulating the anammox activity during start-up period. It is crucial to keep DO below 0.2 ppm, FA below 2 mg/L and nitrite nitrogen below 35 mg/L to cultivate anammox cells in the continuous bioreactor. When the levels of DO, FA and nitrite in the influent were controlled at less than the inhibition levels, the anammox activity increased gradually in the anaerobic condition. Addition of hydrogen sulphide into the reactor enhanced anammox activity in the continuous culture. Through the SEM, TEM and FISH analysis, anammox bacteria were detected in the granular sludge after 3 months of continuous operation.  相似文献   

3.
In this study, a lab scale EGSB reactor was operated for 400 days to investigate the influence of temperature-decrease on the microbial characteristic of retained sludge. The EGSB reactor was started-up at 15 degrees C seeding with 20 degrees C-grown granular sludge. The influent COD of synthetic wastewater was set at 0.6-0.8 gCOD/L. The process-temperature was stepwise reduced from 15 degrees C to 5 degrees C during 400 days operation. Decrease of temperature of the reactor from 15 degrees C to 10 degrees C caused the decline of COD removal efficiency. However, continuous operation of the EGSB reactor led the efficient treatment of wastewater (70% of COD removal, 50% of methane recovery) at 10 degrees C. We confirmed that the both acetate-fed and hydrogen-fed methanogenic activities of retained sludge clearly increased under 15 to 20 degrees C. Changes of microbial profiles of methanogenic bacteria were analyzed by 16S rDNA-targeted DGGE analysis and cloning. It shows that genus Methanospirillum as hydrogen-utilizing methanogen proliferated due to low temperature operation of the reactor. On the other hand, genus Methanosaeta presented in abundance as acetoclastic-methanogen throughout the experiment.  相似文献   

4.
Anaerobic Ammonium Oxidation (ANAMMOX) is a novel biological nitrogen removal process, which is regarded as the most economical process at present. In this paper, two lab-scale UASB reactors, one of which was inoculated with the mixture of anaerobic sludge and aerobic sludge, the other with river sediments, were started up, using the inorganic synthetic water containing ammonium and nitrite as influent. After 421 days' and 356 days operation respectively, the ammonium removal efficiencies in two reactors reached 94% and 86% respectively, the total nitrogen volumetric loading rates were 2.5 and 1.6 kgN/m3 x d. ANAMMOX granules were obtained in both reactors; the color of most granules was brown, but some of them were red. Based on the observation and studies on the microstructure of the granules, three kinds of ANAMMOX granular sludge formation mechanisms were proposed: adhering biofilm and disintegrated granular core mechanism, adhering biofilm and inorganic core mechanism and the self-coherence mechanism. For phylogenetic characterization of anaerobic ammonium oxidizers, 16S rDNA approach was performed using Planctomycetales-specific PCR amplification. The dominant anammox bacteria occupied more than 90% of Planctomycetales-specific bacteria, and 27% of all bacteria in reactors. The dominant anammox bacteria distantly related to all currently reported candidate anammox genera. Functional gene of amoA was analyzed to investigate the 'aerobic' ammonium-oxidizing bacteria in beta-Proteobacteria. The 'aerobic' ammonium-oxidizing bacteria were more diverse than anammox bacteria, but most of them clustered in anoxic ammonium-oxidizing Nitrosomonas eutropha/europaea groups. The composition of 'aerobic' ammonium-oxidizing bacteria is only 2% of all of bacteria in reactors.  相似文献   

5.
Anaerobic ammonium oxidation (anammox) is a type of biological oxidation mediated by a group of Planctomycete-like bacteria. Members of the genus Candidatus Scalindua are mainly found in marine environments, but not exclusively. This group is cultured using different inoculums and conditions; however, its optimal growth conditions are not clear. Additionally, little information is known about the factors that influence the activity and the selection of a population of marine anammox bacteria. This study was conducted to investigate the influence of temperature and salinity on the marine anammox community. To accomplish this, an up-flow fixed-bed column reactor was operated, and quantitative fluorescence in situ hybridization (FISH) with probes specific to dominant marine anammox bacteria was conducted. Anammox activity was observed at 20 and 30 °C, but not at 10 °C. A nitrogen removal rate of 0.32 kg TN m(-3) day(-1) was obtained at 20 °C. These results suggest that temperature affects the activity (nitrogen removal rate) of anammox bacteria, while salinity does not affect the activity in the marine anammox biofilm.  相似文献   

6.
以好氧硝化污泥为培养污泥,采用经稀释的猪场废水启动厌氧氨氧化反应器,经过125 d的培养,根据ASBR反应器出水水样监测结果显示:ASBR反应器稳定运行后NH4+-N、NO2--N的去除率分别达到91.7%、92.0%,说明采用ASBR反应器,接种好氧硝化污泥可成功启动厌氧氨氧化反应器,验证了利用厌氧氨氧化工艺处理类似养殖废水的高氨氮废水的可能性.  相似文献   

7.
A sustainable option for nitrogen removal is the anaerobic ammonium-oxidizing (anammox) process in which ammonium is oxidized to nitrogen gas with nitrite as electron acceptor. Application of this process, however, is limited by the availability of anammox biomass. In this study, two Brocadia-like anammox phylotypes were successfully enriched, detected and identified from an activated sludge taken from a domestic wastewater treatment plant (Minas Gerais, Brazil) employing a Sequencing Batch Reactor (SBR). The dominant phylotype was closely related to 'Candidatus Brocadia sinica', but one clone seemed to represent a novel species for which we propose the name 'Candidatus Brocadia brasiliensis'. Based on Fluorescence in situ hybridization (FISH) analysis, this enrichment led to a relative population size of 52.7% (±15.6) anammox bacteria after 6 months of cultivation. The cultivation process can be divided into three phases: phase 1 (approximately 25 days) was characterized by heterotrophic denitrification metabolism, phase 2 was the propagation phase and phase 3 (from the 87th day onwards), in which significant anammox activity was detected. A long-term performance of the SBR showed a near perfect removal of nitrite based on the influent NO(2)(-)-N concentration of 61-95 mg L(-1). The average ammonia removal efficiency was 90% with the influent NH(4)(+)-N concentration of 55-82 mg L(-1). Therefore, anammox cultivation and enrichment from activated sludge was possible under a controlled environment within 3 months.  相似文献   

8.
In municipal WWTP with anaerobic sludge digestion, 10-20% of total nitrogen load comes from the return supernatant produced by the final sludge dewatering. In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries, in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports the experimental results of the SHARON-ANAMMOX process application to anaerobic supernatant taken from the urban Florentine area wastewater treatment plant (S. Colombano WWTP). A nitritation labscale chemostat (7.4 L) has been started-up seeded with the S. Colombano WWTP nitrifying activated sludge. During the experimental period, nitrite oxidising bacteria wash-out was steadily achieved with a retention time ranging from 1 to 1.5 d at 35 degrees C. The Anammox inoculum sludge was taken from a pilot plant at EAWAG (Zurich). Anammox biomass has been enriched at 33 degrees C with anaerobic supernatant diluted with sodium nitrite solution until reaching a maximum specific nitrogen removal rate of 0.065 kgN kg(-1) VSS d(-1), which was 11 times higher than the one found in inoculum sludge (0.005 kgN kg(-1) VSS d(-1). In a lab-scale SBR reactor (4 L), coupled with nitritation bioreactor, specific nitrogen removal rate (doubling time equal to 26 d at 35 degrees C and at nitrite-limiting condition) reached the value of 0.22 kgN kg(-1) VSS d(-1), which was approximately 44 times larger than the rate measured in the inoculum Anammox sludge.  相似文献   

9.
The feasibility of anaerobic ammonium oxidation (Anammox) in fixed-bed reactors was evaluated on laboratory and pilot scales. Using synthetic wastewater, the specific nitrogen removal rate was increased from 0.05-0.1 kgNm(-3)(reactor)d(-1) to 0.35-0.38 kgNm(-3)(reactor)d(-1) within a year (T= 22-27 degrees C) in all applications. However, the anammox activity was seriously and repeatedly inhibited at prolonged high nitrite concentrations (e.g. six days at 30-50 gNO2-Nm(-3)) and recovery was always a lengthy process. But even at a moderate nitrite concentration (11+/-10 gNO2-Nm(-3)), the observed specific growth rate was only 0.018 d(-1) at 26.4+/-0.8 degrees C, which corresponds to approximately 0.025 d(-1) at 30 degrees C (doubling time: 28 days). In a second experimental period for another 250 days, one of the laboratory reactors was fed with partially nitrified sludge liquors from a domestic wastewater treatment plant (WWTP). In this case, the specific elimination rate was as high as 3.5 kgNm(-3)(reactor)d(-1) at 26-27 degrees C. Independently of the feed, the average nitrogen elimination rate lay between 80-85% in all applications. An appropriate hydraulic design is essential to prevent clogging and local nitrite inhibition in fixed-bed reactors.  相似文献   

10.
The performance of an upflow anaerobic sludge blanket (UASB) reactor and a hybrid UASB-filter reactor was investigated and compared for the treatment of domestic wastewater at different operational temperatures (28, 20, 14 and 10 degrees C) and loading rates. For each temperature studied a constant CODt removal was observed as long as the upflow velocity was lower than 0.35 m/h. At these upflow velocities similar removals were observed for both reactor types at 28 and 20 degrees C, 82 and 72% respectively. However, at 14 and 10 degrees C the UASB reactor showed a better COD removal (70% and 48%, respectively) than the hybrid reactor (60% and 38%). COD removal resulted from biological degradation and solids accumulation in the reactors. At 28 degrees C, a constant 200 g sludge mass was observed in both reactors and COD removal was attributed to biological degradation only. At lower temperatures, solids accumulation was observed in addition to biological degradation with an increase in reactor sludge as the temperature decreased. The decrease in biological degradation at lower temperatures was offset by solids accumulation and explains the similar overall COD removal efficiency observed at 28 degrees C, 20 degrees C and 14 degrees C. The decrease in temperature was also followed by an increase in the effluent TSS concentration in both reactors. At 14 and 10 degrees C a lower effluent TSS concentration and better performance was observed in the UASB reactor.  相似文献   

11.
In recent years a completely autotrophic nitrogen removal process based on Anammox biomass has been tested in a few European countries in order to treat anaerobic supernatant and to increase the COD/N ratio in municipal wastewater. This work reports experimental results on a possible technical solution to upgrade the S. Colombano treatment plant which treats wastewater from the Florentine urban area. The idea is to use 50% of the volume of the anaerobic digester in order to treat external sewage sludge (as septic tank sludge) together with waste activated sludge and to treat the resulting effluent on a SHARON-ANAMMOX process in order to remove nitrogen from the anaerobic supernatant. Anaerobic co-digestion, tested in a 200 L pilot plant, enables low cost treatment of septic tank sludge and increases biogas production; however, it also increases the nitrogen load re-circulated to the WWTP, where nitrogen removal efficiency is already low (<50%), due to the low COD/N ratio, which limits predenitrification efficiency. Experimental results from a SHARON process tested in a lab-scale pilot plant show that nitrite oxidising bacteria are washed-out and steady nitrite production can be achieved at retention times in the range 1 - 1.5 days, at 35 degrees C. In a lab-scale SBR reactor, coupled with a nitration bioreactor, maximum specific nitrogen removal rate under nitrite-limiting conditions (with doubling time equal to about 26 days at 35 degrees C) was equal to 0.22 kgN/kgSSV/d, about 44 times the rate measured in inoculum Anammox sludge. Finally, a cost analysis of the proposed upgrade is reported.  相似文献   

12.
A new anaerobic-oxic biological filter reactor, which was packed with carbon fibre and aerated with micro-bubbles, was proposed. The reactor performance was examined using dye works wastewater compared with the activated sludge reactor. Effluent SS from the experimental reactor was significantly lower than that from the activated sludge reactor, and transparency was higher. Temperatures of the activated sludge reactor were over 35 degrees C and DOC removal ratios were 40-80% depending on the influent wastewater. On the other hand, the DOC removal efficiency of the experimental reactor was over 70%, when the reactor temperature was over 22 degrees C. In the anaerobic zone, sulphate reduction occurred predominantly and acetate was produced. In the oxic reactor, sulphur oxidation and organic removal occurred. When the amount of sulphate reduction in the anaerobic zone increased, DOC and colour in effluent decreased. The sulphate reducing activity of biofilm at 30 degrees C was three times higher than those at 20 degrees C. The sulphate reducing activity of biofilm in the oxic zone was higher than those in the anaerobic zone, meaning that the sulphate reduction-oxidation cycles were established in the biofilm of the oxic zone. Microbial community of sulphate reducing bacteria was examined by in situ hybridisation with 16S rRNA targeted oligonucleotide probes. Desulfobulbus spp. was most common sulphate reducing bacteria in the anaerobic zone. In the oxic zone, Desulfobulbus spp. and Desulfococcus spp. were observed.  相似文献   

13.
The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.  相似文献   

14.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.  相似文献   

15.
Aerobic biological treatment of digested sludge was studied in a continuously operated laboratory set-up. An aerated reactor was filled with thermophilically digested sludge from the Moscow wastewater treatment plant and inoculated with special activated sludge. It was then operated at the chemostat mode at different flow rates. Processes of nitrification and denitrification, as well as dephosphatation, occurred simultaneously during biological aerobic treatment of thermophilically digested sludge. Under optimal conditions, organic matter degradation was 9.6%, the concentrations of ammonium nitrogen and phosphate decreased by 89 and 83%, respectively, while COD decreased by 12%. Dewaterability of digested sludge improved significantly. The processes were found to depend on hydraulic retention time, oxygen regime, and temperature. The optimal conditions were as follows: hydraulic retention time 3-4 days, temperature 30-35 degrees C, dissolved oxygen levels 0.2-0.5 mg/L at continuous aeration or 0.7-1 mg/L at intermittent aeration. Based on these findings, we propose a new combined technology of wastewater sludge treatment. The technology combines two stages: anaerobic digestion followed by aerobic biological treatment of digested sludge. The proposed technology makes it possible to degrade the sludge with conversion of approximately 45% volatile suspended solids to biogas, to improve nitrogen and phosphorus removal in reject water from sludge treatment units, and to achieve removal of malodorous substances after 8-9 days of anaerobic-aerobic sludge treatment.  相似文献   

16.
This study was conducted to demonstrate the application of quantitative real-time polymerase chain reaction (qRT-PCR) for the quantification of dominant bacteria in an anaerobic reactor using a designed TaqMan probe. A novel group of uncultured thermophilic bacteria affiliated with Thermotogales was first found in a phenol-degrading sludge from a 55 degrees C upflow anaerobic sludge blanket (UASB) reactor, which effectively removed 99% of phenol at loading of 0.51 g-phenol l(-1) d(-1) h of hydraulic retention. A TaqMan probe was then designed targeting this group of Thermotogales affiliated bacteria (TAB), and used to monitor its concentration in the reactors. Results showed that the TAB population in the 55 degrees C reactor increased proportional to the phenol degrading rate. Results also showed that the TAB population ranged 3.5-9.9% in the 55 degrees C phenol-degrading sludge, but only 0.0044% in the 37 degrees C sludge and 0.000086% in the 26 degrees C sludge.  相似文献   

17.
Influence of EPS on fouling of intermittent aeration MBR reactor (denitrification MBR) was investigated changing intermittent aeration cycle (10 minute-cycle and 120 minute-cycle) in laboratory-scale reactors using synthetic wastewater. EPS were extracted from bacterial cells using cation resin method and molecular weight fractioning of EPS was conducted using gel chromatography. In both of the reactors, nitrogen removal rate was almost 100% after 50th day although DO concentration was not very high during the aerated phase because of accumulation of nitrifying bacteria in the reactors. In the 120 minutes-cycle reactor, trans-membrane pressure increased more rapidly than in the 10 minutes-cycle reactor. The reason might be that EPS of more than 1000 kDa, which are the main fouling substances, are produced more rapidly in the 120 minute-cycle condition. It was also found that three peaks at around 100 kDa, 500 kDa and 2000 kDa are prominent in EPS in intermittent-aeration MBR irrespective of cycle and higher molecular weight EPS are decomposed to smaller molecular weight EPS on membrane surface.  相似文献   

18.
In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.  相似文献   

19.
Anaerobic on-site treatment of black water (BW) and a mixture of black water and kitchen waste (BWKW) was studied in a two-phased upflow anaerobic sludge blanket septic tank (UASBst) at 10-20 degrees C. The processes were fed either continuously or discontinuously (twice per weekday). Moreover, BWKW was post-treated for nitrogen removal in an intermittently aerated moving bed biofilm reactor (MBBR) at 20 degrees C. Removal of total chemical oxygen demand (COD1) was efficient at minimum 90% with all three UASBst at all temperatures. Removal of dissolved COD (CODdis) was also high at approx. 70% with continuously fed BW and discontinuously fed BWKW, while with discontinuous BW feeding it was 20%. Temperature decrease had little effect on COD removals, though the need for phase 2 increased with decreasing temperature, especially with BWKW. Post-treatment of BWKW in MBBR resulted in approx. 50% nitrogen removal, but suffered from lack of carbon for denitrification. With carbon addition, removal of ca. 83% was achieved.  相似文献   

20.
High rate anaerobic technologies offer cost-effective solutions for "sewage" treatment in the temperate climate of Palestine and Jordan. However, local sewage characteristics demand amendments to the conventional UASB reactor design. A solution is found in a parallel operating digester unit that stabilises incoming solids and enriches the UASB sludge bed with methanogenic activity. The digester operational conditions were assessed by operating eight CSTRs fed with primary sludge. The results showed a high degree of sludge stabilization in the parallel digesters at SRTs>or=10 and 15 days at process temperatures of 35 and 25 degrees C, respectively. The technical feasibility of the UASB-digester combination was demonstrated by continuous flow pilot-scale experiments. A pilot UASB reactor was operated for 81 days at 6 hours HRT and 15 degrees C and was fed with raw domestic sewage. This period was subsequently followed by an 83 day operation period incorporating a parallel digester unit, which was operated at 35 degrees C. The UASB-digester combination achieved removal efficiencies of total, suspended, colloidal and dissolved CODs of respectively 66, 87, 44 and 30%. Preliminary model calculations indicated that a total reactor volume of the UASB-digester system corresponding to 8.6 hours HRT might suffice for sewage treatment in Palestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号