首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
金日团 《人民长江》2001,32(9):32-34
珊溪混凝土面板堆石坝建在厚度达20余米的河床覆盖层上,结合坝址覆盖层的物理力学性质,采取挖除趾板后60m范围内的河床覆盖层及松散的砾砂层(Q4)的处理方案。通过仪埋观测和资料整理分析,大坝及其基础沉降变形观测值均在设计范围值之内,覆盖层变形趋于稳定所经历的时间较坝体堆石料所经历的时间长,坝体沉降量大小与堆石料的特征有关,包括石料岩性,风化程度,抗压强度,软化系数,几何形态及颗粒组成等,在施工期间坝体沉降变形,主要受振动碾压静重和压力波形式的动力作用产生,在压力波影响范围之内,沉降变形近似呈线性变化,表明全断面上升的施工填筑方法确保了大坝施工填筑质量要求。  相似文献   

2.
李干荣  王松波 《人民长江》2008,39(10):49-50
通过对山西西龙池下水库大坝覆盖层基础处理、填筑施工强度、大坝干密度及变形模量检测、大坝沉降观测资料等进行分析,研究西龙池下水库大坝在深厚覆盖层条件下施工期沉降的影响因素和沉降规律.结果表明:①坝基覆盖层的稳定沉降量与坝体高度和覆盖层厚度之比成一元二次方程递增关系.由此可以研究和较准确地推测整个覆盖层坝基的沉降变形情况.②不同分区内坝体的施工期沉降与坝高成一元二次方程递增关系.③理想的均一状态下,坝体的施工期沉降与坝高的平方成正比,与密度成正比,与变形模量成反比.由于大坝的非均质性,计算结果与实际值相差较大.但大坝的施工期沉降与坝高、密度、变形模量的关系可以在一定程度上反应出来,即施工中可以通过提高坝体密度和变形模量来减少坝体施工期沉降.  相似文献   

3.
西藏达嘎水电站河床覆盖层坝基的稳定性评价与计算   总被引:4,自引:0,他引:4  
廖明亮  刘仕勇 《水电站设计》2000,16(4):88-91,93
达嘎水电站河床覆盖层厚约40m,结构、层次复杂、河谷中、下部连续分布较厚的细砂层,所以必须考虑砂层对混凝土大坝稳定性的影响。本文主要介绍了坝基河床覆盖层的特性,对河床覆盖层地基最终沉降量、沉降的时间效应、坝基整体稳定性及砂层地震液化等主要工程地质问题进行了分析、计算,结果表明,完全满足大坝对地基设计的要求。  相似文献   

4.
长河坝水电站土石坝最大坝高242. 50 m,坝基河床覆盖层厚60~70 m,河床覆盖层主要为粗粒土,渗透性强。坝体采用散粒材料筑坝,本构关系复杂,首次蓄水期间的安全稳定尤为重要。原型观测的变形、渗流渗压、沉降、应力等安全监测资料直接反映大坝的运行状态,是评价建筑物安全稳定的基础。长河坝首次蓄水期间,通过对安全监测资料进行整理,并从量级、时间、空间等方面进行分析,对比实测值和反演分析计算值评价大坝安全状态的方法,最终掌握了大坝首次蓄水期的运行状态,为指导工程运行起到了重要作用。  相似文献   

5.
铜灌口水库工程建设中,为了减少坝基开挖,降低施工强度,节省工程投资,并保护工程区环境,通过对坝基覆盖层进行勘探、试验,结合坝体结构设计,采用三维有限单元法,研究了河床覆盖层不同的开挖方案时坝体、面板和接缝系统的应力变形特性,最终确定了坝基覆盖层合理利用的设计方案。  相似文献   

6.
滩坑面板坝采用了一些新的筑坝施工理念,采用抛石挤淤工法,实现基坑深覆盖层坝基开挖快速施工;汛期适当提高坝体填筑高程,在坝面高差处设置超径石保护,经多次过流坝面冲刷少;坝体填筑超高值,下游坝体反抬加高填筑,较好地控制了坝体变形。大坝安全监测结果表明,坝基沉降量小;施工期及蓄水后坝体沉降均匀,水平位移小,大坝施工质量良好。  相似文献   

7.
铜灌口水库是西南五省(自治区、直辖市)重点水源工程和贵州省骨干水源工程之一,坝址区覆盖层深厚,河床覆盖层最大厚度24.6m。通过对坝基覆盖层进行钻孔、注水试验、筛分、载荷试验及物探等工作,查明其分布厚度、成因类型、分布结构、物理力学性质及有无粉细砂、黏性土层等地质条件,对其作为坝基的工程地质特性提供可靠依据;并通过三维有限元对坝体及覆盖层进行应力变形分析,论证河床覆盖层上直接筑坝的安全性。本文对此加以介绍。  相似文献   

8.
本文简要介绍了建于覆盖层上的梅溪水库面板堆石坝原型观测的断面选择,仪器布置及仪器选型等情况.针对此类坝型的特点,分析并指出需重点监测防渗墙应力与变形,坝基与坝体的沉降及周边缝变形等项目.  相似文献   

9.
珊溪水库坝址区河床分布有20余米厚覆盖层,为缩短建设周期,降低工程造价,经过全面的研究论证,利用河床覆盖层作为坝基。目前从观测资料分析,大坝各项指标均在设计范围之内,运行正常。  相似文献   

10.
水库大坝变形特别是沉降值,是反应水库安全运行的重要数据,哈拉布拉水库在施工、运行过程中,其内部变形和外部变形,经监测和测量数据表明,大坝变形尤其是沉降量,与同类型堆石坝对比都很小,目前水库运行安全正常。分析其原因,主要是建设过程中的施工质量控制及变更措施对大坝安全运行起到了重要作用,具体表现为:坝基覆盖层全部清除,坝体直接坐落在基岩上,大幅度减少了坝基沉降值;大坝坝体堆石体填筑碾压标准提高,孔隙率由原设计28%和24%降低为22%,大坝坝体压缩变形小,降低了坝体沉降量。  相似文献   

11.
针对天门河水库面板堆石坝河床段底部面板破坏及垫层料脱空情况,结合坝体沉降变形观测数据,分析了面板产生变形破坏的主要原因,采用了抬高河床段趾板及在产生变形破坏面板的上部重新浇筑1层混凝土面板和对垫层料脱空部分采用充填灌浆的治理方式。工程治理于2007年5月底前完成,并于2009年3月底开始下闸蓄水。水库蓄水后,大坝各项观测资料表明坝体位移、沉降、坝基渗压及面板竖向缝、周边缝测值变化量较小,未见异常。  相似文献   

12.
《人民黄河》2014,(4):99-101
介绍了应力历史对坝体变形的影响和邓肯张本构模型中卸荷的判别标准。在考虑覆盖层应力历史的条件下,把坝基覆盖层各单元的应力和历史最大偏应力、历史最大应力水平以及历史最大固结压力作为大坝填筑前有限元分析计算的初始条件,计算坝体的变形。考虑坝基覆盖层应力历史和不考虑坝基覆盖层应力历史两种情况下的计算结果表明:当考虑坝基覆盖层应力历史时,坝体变形明显偏小,并且最大位移值发生位置明显靠向坝体上部,证明坝基覆盖层应力历史对土石坝变形有重要影响。  相似文献   

13.
将混凝土面板堆石坝坝基建在深厚覆盖层上,可减少开挖工程量,对降低工程成本和缩短工期是有益的。坝基河床覆盖层是否挖除,要视其工程地质特性和变形量级而定。采用高能级强夯处理,施工方便,可有效提高覆盖层承载能力,减小坝体的后期变形,保证大坝安全运行。  相似文献   

14.
通过对坝基覆盖层进行了钻探、注水试验、跨孔声波、颗粒级配分析、载荷试验等工作,分析坝基覆盖层的物质组成、覆盖层结构、相应的物理力学参数等,并利用三维有限单元法计算河床不同覆盖层开挖范围时坝体、面板和接缝的应力变形指标,从而对覆盖层上直接筑坝的可行性作出判断,以指导施工。  相似文献   

15.
周建平  陈观福 《水力发电》2004,30(1):299-306
本概述了深厚覆盖层坝基防渗处理的常用方法及其特点,分析阐述了深厚覆盖层混凝土防渗墙应力与变形的影响因素及防渗墙与坝体防渗体的连接型式,以期为深厚覆盖层坝基的处理提供有价值的信息和参考。  相似文献   

16.
本文依托河口村水库工程安全监测项目,通过坝基、坝体沉降变形监测资料分析,系统地研究深厚覆盖层面板堆石坝沉降变形变化规律。成果表明:(1)坝基和坝体沉降填筑期随填筑高度增加而增大,静置期随时间增加而增大,整体呈先增加而后减小直至趋于零的趋势;(2)坝基和坝体沉降趋稳,主要受坝基地质情况和坝体填筑高程影响;(3)堆石坝沉降整体与坝型呈不对称分布,其最大沉降量约占坝高的0.72%,符合一般土石坝沉降变形规律。监测成果为保证大坝填料、混凝土面板施工以及评价大坝安全性状提供科学依据,亦可为类似工程提供借鉴和参考。  相似文献   

17.
本文介绍了在坝基河床厚覆盖层上建筑钢筋混凝土面板堆石高坝的观测设计特点、观测项目设置、测点布置和仪器选型。  相似文献   

18.
根据脂水库面板堆石坝施工期和水库蓄水初期坝体的原形观测资料,对坝体应力变形分析所用的坝料计算参数进行了反馈分析,得出了坝体堆石料及坝基覆盖层的弹塑性应力变形计算参数。从统计模型的角度出发,研究了坝体变形长期预报模型,建立了考虑填筑分量和时效耦合作用的预报模型。  相似文献   

19.
根据梅溪水库面板堆石坝施工期和水库蓄水初期坝体的原型观测资料,对坝体应力变形分析所用的坝料计算参数进行了反馈分析,得出了坝体堆石料及坝基覆盖层的弹塑性应力变形计算参数。从统计模型的角度出发,研究了坝体变形长期预报模型,建立了考虑填筑分量和时效耦合作用的预报模型。  相似文献   

20.
对小浪底大坝坝基覆盖层地震液化可能性及其对大坝的影响进行研究。结果表明,河床覆盖层中表层堆积的粉细砂、壤土及砂砾石层顶部的一部分为第四纪全新统沉积物,密实度低,属于液化土;上更新统砂卵石层的含砂率一般小于30%,相对密度大于0.65,地震时不易产生液化,但也有局部含砂率大于30%,只是其分布范围小,不会对坝体造成危害;坝基类砂层为非液化土。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号