首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetland habitats are crucial for many fish species as spawning, feeding or nursery areas, but the major factors that govern their use by fish are poorly identified. In the present study, we aim to investigate the selective use and the spatial distribution of native and non‐native fish species in different types of wetland habitats (grasslands and reed beds) in a large freshwater marsh (North Western France). The selective use was measured by comparing the community that uses wetland habitats to the total community of the marsh (sampled in the permanent aquatic habitats (canals) during the low water period). The spatial distribution was studied by analyzing the presence probability of fish in wetland habitats as a function of the distance from adjacent canals. All sampled wetland habitats were occupied by fish, and the fish community in wetland habitats was dominated by three native (Abramis brama, Scardinius erythrophthalmus and Anguilla anguilla) and three non‐native (Ameiurus melas, Gambusia holbrooki and Lepomis gibbosus) species. Species richness and total fish abundance differed between canals and wetland habitats as a consequence of a variable propensity to use wetland habitats by native (avoidance and preference) and non‐native (no preference) species. Non‐native species were also more abundant in reed beds than in grassland while no differences were observed for native species. Universally, the presence probability of fish always decreased in wetland habitats as the distance from the canals increased and only a narrow area, close to canals (50–80 m), was well used by fish. However, non‐native fish species used over greater distances in reed beds than in grasslands while no differences were observed for native species. Variable interpretations related to species tolerance, reproductive guilds or diet are proposed to understand the mechanisms that might explain the widespread success of non‐native species in this spatially varying environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500‐m river reaches was sampled repeatedly with several techniques (boat‐mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non‐native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non‐native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species‐specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Hydropower dams substantially modify lotic ecosystems. Most studies regarding their ecological impacts are based on large dams and provide little information about the far more abundant effects of small hydropower dams. Our aim was to characterize the ecological effects of a small hydropower dam and run‐of‐the‐river reservoir on the structure of benthic macroinvertebrate assemblages in the Pandeiros River located in the neotropical savanna of Brazil. We tested the hypothesis that benthic macroinvertebrate assemblages in sites directly affected by the dam and reservoir would show a different taxonomic structure compared with those in free‐flowing sites. We expected to find sensitive native species associated with the free‐flowing sites, whereas resistant and non‐native invasive taxa were expected in impounded sites. We also explored associations between the presence of native and non‐native invasive taxa to each habitat type. We found that the structure of benthic macroinvertebrate assemblages was significantly different between free‐flowing and impounded sites. Also, we found that the dam and reservoir facilitated colonization of non‐native invasive species (Corbicula fluminea and Melanoides tuberculata) because only in those sites they were found in high abundance, in contrast to the free‐flowing sites. Although the environmental conditions imposed by the impoundment altered the structure of benthic macroinvertebrate assemblages, the effects were limited to sites closest to the dam. Our results highlight the necessity of understanding physical habitat changes caused by the presence and management of run‐of‐the‐river dams and reservoirs.  相似文献   

4.
Matching habitat typology and ecological assemblages can be useful in environmental management. We examined whether a priori defined riverine sections correspond with distinct fish assemblage types along the >2000 km long course of the Danube River, Europe. We also tested whether different sampling methods (i.e. day and night inshore electric fishing and offshore benthic trawling) provide consistent typological results. Analysis of assemblage similarities, indicator species analysis, non‐metric multidimensional scaling (NMDS) and k‐means analyses indicated that fish assemblages of the a priori defined Upper‐, Middle and Lower‐Danubian sections differed slightly, but within class variability was high. Although indicator species analysis showed that the Upper‐Danube belongs to the barbel (Barbus barbus) zone and the Middle‐ and Lower Danube belong to the bream (Abramis spp) zone, indicator values of the character species were generally low. The NMDS analyses suggested a weak gradient in assemblage structure along the course of the river with relatively high variability between neighbouring sites. K‐means analyses revealed that many sampling sites were in a different class than the a priori defined sections, and classifications at other group numbers did not lead to better classification outcome. Overall, the results do not suggest clearly distinguishable assemblage types with distinct boundaries in the potamal section of a great river. Nevertheless, the division of the potamon to smaller sections may explain some variability in fish assemblage structure, and could be used for bioassessment purposes. The study also shows the importance of multihabitat and multigear surveys in the typological assessment of great rivers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Aridland riparian forests are undergoing compositional changes in vegetation and wildlife communities due to altered hydrology. As flows have been modified, woody vegetation has shifted from native‐tree dominated to non‐native and shrub encroached habitats. Squamate vertebrates such as lizards and snakes are important food web links in riparian ecosystems of the Sonoran Desert. However, little is known about how these communities might respond as riparian forests transition from native tree dominated habitats to open xeroriparian woodlands. We used pitfall arrays deployed across three types of riparian forest to document reptile community patterns, measure vegetation, and produce species‐habitat models. Riparian forests differed on the basis of habitat composition and physiognomy. Two types, cottonwood‐willow (Populus‐Salix) and mesquite (Prosopis) stands, were characterized by high woody species richness. The third type, non‐native saltcedar (Tamarix) stands, had high densities of woody debris and greater canopy coverage. Results show that lizards were common and abundances greatest in cottonwood‐willow, especially for arboreal species. Species‐habitat models for three of five lizard species indicated a negative association to saltcedar‐invaded habitat and no species appeared to select saltcedar‐dominated habitat. Mesquite was an intermediate habitat between upland and riparian, and supports high species diversity. A wildfire in the cottonwood‐willow forest disproportionately affected abundance of ground‐foraging whiptail (Aspidoscelis) lizards; whereas, abundance of arboreal spiny (Sceloporus) species was unchanged. Expected drivers from climate and water use could transition cottonwood forests to other woody‐dominated types. Our results suggest that mesquite woodlands would provide higher quality habitat for riparian reptiles compared to non‐native saltcedar stands.  相似文献   

6.
Habitat modifications, non‐native species and other anthropogenic impacts have restructured fish communities in lotic ecosystems of central Mexico. Conservation of native fishes requires understanding of food web changes resulting from the introduction of non‐native species, flow alteration and other human impacts. Using δ13C and δ15N analysis of fishes and invertebrates we investigated the effects of non‐native species, and reservoirs on food webs of the Laja river ecosystem (Guanajuato, central Mexico). We estimated trophic position (TP), relative trophic niche and food web dispersion at 11 reservoir, river and tailwater sites. Reservoirs and non‐native fishes modified food webs in the Laja. Food web dispersion was greater in reservoir than in tailwater and river sites. Reservoir food webs had the greatest range of δ13C values, indicating a more diverse resource base compared to rivers. δ13C values increased with distance downstream from reservoirs, suggesting declining subsidies of river food webs by reservoir productivity. Stable isotopes revealed potential effects of non‐native fishes on native fishes via predation or competition. Non‐native Micropterus salmoides were top predators in the system. Non‐natives Cyprinus carpio, Oreochromis mossambicus and Carassius auratus exhibited lowest TP in the Laja but overlapped significantly with most native species, indicating potential for resource competition. Native Chirostoma jordani was the only species with a significantly different trophic niche from all other fish. Many rivers in central Mexico share similar anthropogenic impacts and similar biotas, such that food web patterns described here are likely indicative of other river systems in central Mexico. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The ecological knowledge of large rivers is still scarce or highly fragmented mainly because of complex, laborious and expensive procedures to collect informative samples from the benthic biota. Standard sampling protocols for macroinvertebrates were mainly developed and calibrated for wadeable streams, while a number of heterogeneous non‐standard sampling procedures are available for large rivers. We propose the new, easy‐to‐build and cost‐effective leaf‐nets (LN) method to quantitatively sample benthic invertebrates in non‐wadeable waterways. The LN method uses Phragmites australis leaves as substrate and combines the characteristics of the leaf‐bags and the Hester–Dendy (HD) multiplates methods. We compared the effectiveness of the LN and HD methods in a near‐pristine and in an impacted stream‐reach (downstream an aquaculture plant) of a non‐wadeable second‐order stream of Central Apennines (Italy). Twenty‐five of the 34 cumulatively collected macroinvertebrate taxa were common to both methods, while seven taxa were found only on LN and two only on HD. Taxonomic richness and total macroinvertebrate abundance were higher for LN assemblages. Number of Ephemeroptera, Plecoptera and Trichoptera taxa (EPT) also tended to be higher on LN. Assemblage composition was different on LN and HD. Both methods documented a significant decrease in EPT taxa and a concomitant increase in the total abundance of more pollution‐tolerant taxa in the impacted stream‐reach, but the LN method was more sensitive to impact‐associated changes in macroinvertebrate assemblage structure. In contrast to the hardboard plates of HD, the assembled leaves of the LN may act as a direct or indirect food source and may better mimic the texture and composition of more heterogeneous natural substrates thus favouring the migration–colonization process from both bottom and littoral benthic invertebrates. The sampling efficiency, cost effectiveness and simplicity warrant the routine use of the new LN method in large‐river ecological assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this study was to identify potentially invasive non‐native freshwater fishes in the middle reach of the Yarlung Zangbo River, Tibetan Plateau (China), using the Aquatic Species Invasiveness Screening Kit (AS‐ISK), as decision‐support tool. Based on independent evaluations of 24 non‐native freshwater fishes, receiver operating curve analysis identified a threshold score of ≥29 for distinguishing species likely to pose a high risk of becoming invasive from species likely to pose low‐to‐medium risk (<29) in the risk assessment area. Nine species were categorized as “high risk”: goldfish Carassius auratus, topmouth gudgeon Pseudorasbora parva, brook trout Salvelinus fontinalis, Oriental weatherfish (a.k.a. dojo gudgeon) Misgurnus anguillicaudatus, Siberian taimen Hucho taimen, common carp Cyprinus carpio, peled Coregonus peled, western mosquitofish Gambusia affinis, and Chinese rice fish Oryzias sinensis. The three lowest scoring species were Arctic cisco Coregonus autumnalis, Wuchang bream Megalobrama amblycephala, and Chinese ice fish Neosalanx taihuensis, which are unlikely to be invasive because they are unable to complete their life cycle in the risk assessment area. Climate change assessments scores increased or remained the same for warm‐water species and decreased for coldwater species. This study was the first application of AS‐ISK in western China, and the results suggest that AS‐ISK is a useful and valid tool for identifying potentially invasive risk aquatic species in China.  相似文献   

9.
River regulation is associated with vegetation encroachment and invasions of some non‐native species in the semi‐arid west. Shifts in the abundance of native and non‐native woody riparian species are an interplay of regulation, life history traits and an array of flow and physical environmental variables. We sought to compare plant densities and per cent cover of several invasive species over two time periods in a paired river study, contrasting three different degrees of regulation along reaches of the Green and Yampa rivers in Colorado and Utah, USA. We censused patches of non‐native plants and recorded per cent cover in quadrats along 171 river km. The upper Green (10.1 patches ha?1) had the highest invasive plant patch density followed by the lower Green (4.4 per ha) and the Yampa (3.3 per ha). Invasive species were present in 23%, 19% and 4% of sample quadrats, and an average of 0.28, 0.22 and 0.04 invasive species detected per square metre was recorded along the upper Green, lower Green and Yampa Rivers, respectively. Most species had significantly (p ≤ 0.02) higher percent cover on the upper Green than either or both the lower Green and the Yampa River. Whereas the less regulated river reaches maintain lower densities of invasive species than the most regulated reach, long‐term persistence of this pattern is still in question as some species patches showed notable increases on the Yampa and lower Green Rivers from 2002–2005 to 2010–2011. Although invasion is enhanced by flow regulation, life history traits of some species suggest invasion is likely, regardless of flow regulation. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

10.
为探究北方缺水地区湿地植物物种多样性变化,选取北京市延庆区妫水河为研究区,采用物种丰富度(R),Shannon-Wiener指数(H),Simpson指数(D)和Peilou均匀度指数(J)作为植物群落多样性指标,使用方差法和典型对应分析(CCA)对不同河段和区域间湿地植物物种分布与环境因子之间的响应关系进行研究。研究结果表明:研究区现有湿地植物93种,隶属于44科76属,优势科有菊科(Asteraceae)、禾本科(Poaceae)、豆科(Fabaceae)和莎草科(Cyperaceae); 93种植物的Shannon-Wiener指数(H)小于3,Simpson指数(D)和Peilou均匀度指数(J)介于0. 5~0. 75之间,物种数量总体不多,但分布较均匀,处于中等水平;对湿地植物群落形成及生长影响较大的水质因子依次为全氮(TN)、p H和化学需氧量(COD)。  相似文献   

11.
The occurrence of aquatic plants was analysed in a medium‐sized river in Greece. There were three objectives. The first was to examine the macrophyte assemblage structure along the river. The identification and hierarchical structure of aquatic plant assemblages were analyzed using Bray–Curtis analysis. Taxa primarily responsible for the differences among the assemblages were identified using similarity percentage analysis. The second objective was to investigate whether habitat features have greater impact on aquatic plant assemblages than chemical parameters. Partial canonical correspondence analysis was used for partitioning the total variation of the biological response. The third objective was to further explore the relationships between hydrophytes (water‐supported plants) richness and water quality using linear regression model. The results showed that from the 86 macrophyte taxa recorded, the 25 were found to be primarily responsible for the differences among the macrophytic assemblages. Both geomorphological and physicochemical variables proved to be significant in the Monte Carlo permutation test. The 14 out of 19 geomorphological variables were statistically significant (p<0.004) and included in the final canonical correspondence analysis model. From physicochemical variables, temperature, conductivity and water velocity were significant predictors of species distribution. Total macrophyte variation was divided into portions: (i) explained exclusively by geomorphological variables (34%); (ii) explained exclusively by physicochemical variables (3%); (iii) explained by both variables (52%); and (iv) unexplained (4%). Partitioning clearly revealed that macrophyte assemblage structure was strongly associated with geomorphological features. Τhe results indicated that hardness, DO and chl‐a play a more prominent role in hydrophyte species richness at community level. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Disturbance shapes the structure and function of aquatic communities and ecosystems, but the dynamics of ice are a less studied dimension of the disturbance‐regime of rivers. We investigated effects of a river‐ice regime on organic‐matter dynamics and feeding ecology of aquatic insects. Samples of biofilm and aquatic insects for gut content analysis were collected monthly from Big Creek, a sixth ‐ order tributary of the Middle Fork Salmon River in central Idaho, USA, during winter 2010–2011. Our results indicate that river ice affects both quantity and quality of organic matter available to, and used by, consumers. Specifically, scour from December and February ice break‐up events reduced biofilm biomass by one‐half and one‐third, respectively, whereas quality (chlorophyll‐a: ash‐free dry mass) increased. Diets of scrapers, Rhithrogena (Heptageniidae) and Bibiocephala (Blephariceridae), collector‐gatherers, Baetis (Baetidae), and collector‐filterers, Simulium (Simulidae) appeared to follow patterns of organic matter. Following ice break‐up events, diets of these taxa had increased proportions of diatom frustules, which are high‐quality food resources due to their relatively high nutrient content. Other taxa, such as collector‐gatherers, non‐Tanypodinae (Chironomidae), and the collector‐filterer, Arctopsyche grandis (Hydropsychidae), consistently consumed high proportions of diatom frustules and insect material, respectively, suggesting they were able to feed more selectively throughout winter. Our study indicates that ice regimes in temperate rivers can affect organic‐matter dynamics and feeding ecology of aquatic insects, a possibility that deserves additional investigation, particularly in light of potential changes to the ice regimes of rivers with changing climate .  相似文献   

13.
Dams create barriers to fish migration and dispersal in drainage basins, and the removal of dams is often viewed as a means of increasing habitat availability and restoring migratory routes of several fish species. However, these barriers can also isolate and protect native taxa from aggressive downstream invaders. We examined fish community composition two years prior to and two years after the removal of a pair of low‐head dams from Boulder Creek, Wisconsin, U.S.A. in 2003 to determine if removal of these potential barriers affected the resident population of native brook trout (Salvelinus fontinalis). Despite the presence of other taxa in the downstream reaches, and in other similar streams adjacent to the Boulder Creek (including the brown trout, Salmo trutta), no new species had colonized the Boulder Creek in the two years following dam removal. The adults catch per unit effort (CPUE) was lower and the young‐of‐the‐year catch per unit effort (YOY CPUE) was higher in 2005 than in 2001 in all reaches, but the magnitude of these changes was substantially larger in the two dam‐affected sample reaches relative to an upstream reference reach, indicating a localized effect of the removal. Total length of the adults and the YOY and the adult body condition did not vary between years or among reaches. Thus, despite changes in numbers of adults and the YOYs in some sections of the stream, the lack of new fish species invading Boulder Creek and the limited extent of population change in brook trout indicate that dam removal had a minor effect on these native salmonids in the first two years of the post‐removal. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
With the purpose of finding out whether seasonal water level fluctuations could affect water quality in a reservoir subjected to those changes, trends in environmental variables and in phytoplankton and zooplankton assemblages were analysed. The reservoir's hydrological cycle was characterized by three regimes. The maximum level phase lasted from January to the beginning of June, the emptying phase existed between mid‐June to the beginning of September and the minimum level phase lasted from mid‐September to the beginning of the first autumn/winter rain events. The highest values of total phosphorus, soluble reactive phosphorus, nitrate, water colour and chlorophyll a were found during the minimum level phase. The phytoplankton assemblage was dominated by taxa typical of meso‐eutrophic environments during the emptying and minimum level phases. However, during the maximum level phase, taxa generally found in more oligotrophic systems were observed here also. Similar to other disturbed systems, the zooplankton assemblage was dominated by Rotifera, except in summer and autumn when the cladoceran Ceriodaphnia quadrangula and/or the copepod Tropocyclops prasinus became dominant. Although those shifts seem to be related to water level variations, further research is needed to evaluate to what extent they might also be induced by other seasonal factors acting independently of water fluctuations. Based upon the obtained data, suggestions for reservoir management are proposed.  相似文献   

15.
16.
In the south‐eastern United States and globally, increasing human water demand coupled with climate change is diminishing stream flows and increasing stream intermittency in many watersheds. We characterized benthic invertebrate assemblages across a stream flow gradient ranging from intermittent to perennial following a multiyear drought by examining the functional traits that can influence assemblage response to drying. We sampled 13 reaches within the Lower Flint River Basin in south‐western Georgia, from September to December 2013. Reaches included perennial, near‐perennial (ceased flowing but maintained a wetted channel during drought), intermittent‐dry (seasonally dry), and intermittent‐frequent (frequently dry). Distinct assemblages were documented across this gradient. Reaches that dried during the drought had a lower richness of aquatic insects, especially Ephemeroptera, Plecoptera, and Trichoptera taxa, partly due to inadequate time for life cycle completion and lack of adaptations to avoid drying. Intermittent reaches also included abundant and unique noninsect taxa such as Gammarus spp. and Isopoda. Projected trends towards increased water demand and drought severity and frequency in the south‐eastern United States will magnify shifts towards dominance by drought‐tolerant taxa as greater portions of stream networks become intermittent.  相似文献   

17.
We assessed the importance of flow regime to the success of native and non‐native fish species by analysing winter/spring seining data collected from 1987 to 1997 on the resident fish communities of the lower Tuolumne River, California. The data were analysed using regression models to predict the percentage of non‐native fish at a site. The regression models included various combinations of the variables longitudinal location of the site, mean April/May stream discharge in the year of sampling, and mean April/May stream discharge in the previous year. Comparison of the models indicated that the best model included longitudinal location and stream discharge in the previous year. This model is consistent with the hypothesis that flow in the previous year differentially affects reproductive success of native and non‐native species and thus the resulting community sampled in the following winter/spring. A detrended correspondence analysis of percentage abundance species data identified a co‐occurring group of native species and a co‐occurring group of non‐native species with the non‐native red shiner (Cyprinella lutrensis) grouping separately. The differing reproductive strategies of the species were consistent with the hypothesis concerning spawning success. Our results indicate that flow regime is an important determinant of the reproductive success of native and non‐native fish species in regulated rivers. Manipulations of flow regime are a potentially powerful tool for managing native fish species, but should be considered in combination with other restoration efforts and in the context of ecosystem restoration. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Little is known about the effects of urbanization on the chemical quality of soils in suburban wetland inlet drainage systems to the Uganda side of Lake Victoria, on which food crops are extensively grown. It is feared that pollution in the soils might eventually enter food chains through such crops being consumed by urban populations unaware of their occurrence. Soil samples were collected from cultivated areas of a major wetland drainage system (Nakivubo Channel), at Kampala, Ubanda, near Lake Victoria and from a rural control wetland site (Senge). The soil from this site had similar properties as those from the urban test site (i.e., soil texture; porosity; humus content). Analysis of heavy metals with atomic absorption spectrophotometry (AAS) yielded the following soil concentration ranges: manganese (190–780), cadmium (<0.001–1.0), zinc (6.0–10.0) and lead (10–20 mg kg?1) dry weight for the control site, and 450–900, 1.0–2.0, 131–185, 40–60 mg kg?1 dry weight, respectively, for the urban wetland, indicative of relatively heavy metal pollution in the suburban drainage system. Heavy metal levels in cocoyam (Colocasia Esculenta) and sugarcane (Saccharum Officinarum) grown on both wetland soils also were evaluated via AAS with a modified wet‐acid‐digestion technique. The results highlighted high cadium and lead levels (P 0.0003) in the crops from urban wetland cultivation. Cadmium and lead concentrations in cocoyam from urban wetland soils exceeded those from the control site by 0.17 and 3.54 mg kg?1, respectively. The corresponding results for sugarcane indicated a similar increase of 0.56 and 2.14 mg kg?1 of juice extract. Cadmium and lead levels in both urban wetland crops were higher than the maximum permissible limits of the Codex Alimentarius Commission, indicating that these concentrations pose potential health risks to urban consumers, and call for early counter‐measures to combat urban pollution entering the lake.  相似文献   

19.
Small‐scale fisheries in developing countries are characterized by uncertain futures attributable to ever‐increasing pressures on wetland resources. Data on the interconnectivity between wetland fishery, land‐use changes and the socio‐economic situation in the Mpologoma wetland, Uganda, were obtained through interviews and structured questionnaire surveys at sampling sites exhibiting differing different levels of environmental disturbance (ranging from less disturbed to highly disturbed). Rice production was the major economic activity at the highly disturbed sites, while maize production was the major activity at the less‐disturbed sites. Of the secondary activities, the Clarias gariepinus (Burchell, 1815) and Protopterus aethiopicus (Heckel, 1851) fishery was more important at the less‐disturbed sites. The high daily fish sale income ranging from US$ 8 to 12 and the high‐percentage (52%) catch preference of all large wetland fish species were observed for the less‐disturbed sites. A high percentage of respondents from the area of the less‐disturbed sites had higher annual incomes, resulting in more accumulated wealth than for the highly disturbed Nsango site, whose fishery was affected by large‐scale rice schemes. The overall socio‐economic impact of the small‐scale fishery, based on the data regarding the number of fishermen and their dependents, and the income from fish sales and other wetland activities, was low, with differences between sites being attributed to the level of wetland disturbance. The Mpologoma wetland is threatened by overexploitation of its fisheries services, but also overlooked and undervalued by policymakers because of inadequate fisheries statistics. Thus, the information derived from this study will facilitate the formulation and design of riverine wetland‐specific and small‐scale fisheries management strategies.  相似文献   

20.
Mountain streams that originally supported Hawaiian cultural practices have been diverted for development, agriculture and tourism for over 150 years. Habitat characteristics and benthic macroinvertebrate community responses to water withdrawal were studied in four West Maui Mountain watersheds. We compared riffle and cascade habitats upstream and downstream of the highest‐elevation diversion in each stream and further compared streams to understand variation among watersheds. Riffles were shallow areas with moderate flow, whereas cascades had high‐velocity water flowing over boulders and were separated into torrenticolous (submerged) and amphibious (splash zones on adjacent exposed rock) microhabitats. Among streams, downstream discharge was reduced by 84–99%, flow velocity was four times greater upstream, and depth was 50% lower downstream. There was a significant 44% reduction in downstream macroinvertebrate density (t = 3.261, df = 136, p = 0.0014); however, density did not significantly differ among streams (F = 1.95, df = 3, p = 0.125). Habitat‐corrected density, based on total available habitat area, indicated significantly greater proportions of native taxa in amphibious microhabitats compared with riffle and torrenticolous habitats. Non‐native Chironomidae and Trichoptera (Cheumatopsyche sp. and Hydroptila sp.) were dominant (>95%) and ubiquitous in riffles, whereas native Limonia sp. dominated (30%) amphibious microhabitats. Macroinvertebrate community structure varied among streams, sites and microhabitats, indicating inconsistent response to water withdrawal, dependent upon watershed size and microhabitat conditions. Our findings contribute to water management and restoration efforts focused on conservation of native species and habitat integrity in tropical streams worldwide. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号