首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
活性炭为载体的好氧颗粒污泥培养及性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
好氧颗粒污泥是一种应用于废水生化处理中的新型活性污泥技术,具有结构致密,沉降性能优越,生物处理能力强等特点.通过在气升式内循环间歇反应器启动阶段,接种活性污泥的同时添加活性炭颗粒(AC)的方法,缩短好氧颗粒污泥颗粒化时间,成功培养出了沉降速率大,结构稳定,除氮效果好的活性炭好氧颗粒污泥.并考察了活性污泥絮体-出现颗粒污泥-成熟颗粒污泥-储存-解体-修复的过程,验证了载体强化型好氧颗粒污泥处理低碳氮比废水的可行性.实验结果证明:活性炭好氧颗粒污泥反应器稳定运行时,COD、氨氮、总氮去除率分别可以达到80% ~ 90%、99%、80%.将成熟活性炭好氧颗粒污泥储存12个月,经过恢复培养,物理特性及脱氮性能能够完全恢复到储存前的水平.  相似文献   

2.
利用自制的SBR反应器,在厌-好氧交替运行条件下,采用逐步提高进水负荷的调控方法培养好氧颗粒污泥。针对好氧颗粒污泥的特点,选取影响好氧颗粒污泥成粒的进水COD、进水C/N比、厌氧时长、水力停留时间和曝气量5个因素,采用正交试验方法,探索其对好氧颗粒污泥形成的影响度,找到好氧颗粒污泥形成的最优培养条件。实验证明:在现有实验条件下影响颗粒化率的显著程度依次为:进水COD—沉降时间—厌氧时长—进水C/N比—曝气量—水力停留时间。最优培养条件是进水COD为600~1 300 mg/L,沉降时间为10 m in,厌氧时长为30 m in,进水C/N为10∶1,曝气量为0.2 m3/h,水力停留时间为270 m in,此条件下培养的好氧颗粒污泥COD去除率和氨氮去除率分别达到96%和83%。  相似文献   

3.
好氧颗粒污泥特质及其在工业废水处理中的应用   总被引:5,自引:0,他引:5       下载免费PDF全文
好氧颗粒污泥具有沉降性能好、承受有机负荷高等特质,较高的水力剪切力有助于形成结构密实、沉降性能良好的颗粒污泥,并可促进微生物的代谢活性,能有效地去除重金属和结构复杂的高分子有机物等难降解物质。  相似文献   

4.
以实验室模拟废水为进水,在SBR反应器中利用好氧颗粒污泥进行N、P的去除效率研究.研究表明:在运行周期约为4h,进水COD控制在500~1200 mg/L之间,室温条件下,好氧颗粒污泥对COD、氨氮、硝氮、TP的去除率稳定维持在97%、95%、92%、86%,说明好氧颗粒污泥特有的结构特性和生物特性有利于脱氮除磷.  相似文献   

5.
为快速启动好氧颗粒污泥反应器,在SBR反应器中同时接种硝化污泥和厌氧颗粒污泥,控制反应条件,温度23~25℃,pH值7.5~8.5,DO质量浓度1.5 mg/L左右,15 d即完成反应器快速启动。形成的好氧颗粒污泥粒径1.5~2.5 mm,SVI值54 mL/g。颗粒污泥结构紧密,沉降性能良好。反应器连续运行40多天,改变进水COD及NH4+-N浓度,COD和NH4+-N去除率均能稳定在80%以上,反应器内发生了同步硝化反硝化过程。  相似文献   

6.
好氧颗粒污泥因其优异的沉降性能和较高的处理负荷等优势,成为近年水处理领域的研究热点。以不同结构的好氧污泥为分析对象,综述了F/M对污染物处理效率和污泥生长特性的影响,揭示了F/M在废水好氧生物处理工艺性能与污泥结构稳定中的重要作用。  相似文献   

7.
生物钙法好氧污泥颗粒化条件研究   总被引:4,自引:0,他引:4  
本研究运用正交试验的方法,对生物钙法好氧污泥颗粒化的可行性和条件进行研究。在试验过程中,有少量污泥颗粒产生。试验结果表明,生物钙法好氧污泥颗粒化条件的最优水平组合为:水力停留时间(HRT)6h,人工诱导剂Ca(OH)_2浓度500mg/L,间歇投碱(少量Na_2CO_3)。其中,水力停留时间为关键控制因素。  相似文献   

8.
好氧颗粒污泥的形成和技术条件   总被引:10,自引:0,他引:10  
本文就好氧生物处理系统中形成颗粒污泥自凝聚的现象进行了讨论,并分析了好氧颗粒污泥的主要特征和影响好氧颗粒污泥形成的主要条件.最后,作者提供了好氧颗粒污泥反应器设计、启动和运行方法及措施.  相似文献   

9.
好氧颗粒污泥以其在反应器中污泥沉降速度快、泥水分离简单、污泥浓度高,能够同时实现脱氮除磷等特点成为目前污(废)水处理领域的研究热点之一。对好氧颗粒污泥在高浓度有机废水及难降解废水(硝基苯废水、苯酚废水、氯酚废水、苯胺和氯苯胺废水、含盐废水、染料废水)处理中的研究现状进行综述,重点探讨了好氧颗粒污泥处理该类物质的影响因素、去除机制及其微生物特性等,指出其在难降解废水处理方面具有良好的应用前景。  相似文献   

10.
利用好氧颗粒污泥处理垃圾渗滤液,试验结果表明,好氧颗粒污泥对垃圾渗滤液具有较好的脱氮效果,经10 h处理,氨氮去除率可达95%以上,亚硝态氮转化率在60%以上,总氮去除率在15%以上,为后续的脱氮反硝化工艺提供了便利条件。  相似文献   

11.
In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.  相似文献   

12.
The influence of settling time on the formation of aerobic granules.   总被引:17,自引:0,他引:17  
Aerobic granular sludge, without the addition of carrier material, has only been reported in one suspended growth system, the Sequencing Batch Reactor (SBR) operated with short fill and settling periods. Recent studies have demonstrated that extracellular polysaccharides increased with the formation of aerobic granules, and that the shear force may stimulate production of these polysaccharides. In the study described herein, two SBRs were operated with the same shear force (air flow rate 275 L h(-1)) and two different settling times (2 and 10 min). Only the reactor with 2 min settling formed completely granular sludge, although granules were present in both reactors. Community analysis using 16S rRNA PCR products and DGGE showed that the communities diverged quickly after reactor start-up. For samples taken at steady-state, the granular population was more stable and less diverse than the flocculent reactor. EPS extraction of samples using cation exchange resin yielded similar values for aerobic granular sludge and previously reported anaerobic granules. While differences in the protein and TOC content between the flocculent and granular reactors increased appreciably as the sludge became more granular, the protein to polysaccharide ratio was relatively constant. The experiment confirmed previous theories that short settling times in SBRs select for granular sludge. The settling time results in granular sludge having a higher EPS protein content and a less diverse but more stable population.  相似文献   

13.
Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.  相似文献   

14.
In this study, the effectiveness of aerobic granular sludge as seed sludge for rapid start-up of nitrifying processes was investigated using a laboratory-scale continuous stirred-tank reactor (CSTR) fed with completely inorganic wastewater which contained a high concentration of ammonia. Even when a large amount of granular biomass was inoculated in the reactor, and the characteristics of influent wastewater were abruptly changed, excess biomass washout was not observed, and biomass concentration was kept high at the start-up period due to high settling ability of the aerobic granular sludge. As a result, an ammonia removal rate immediately increased and reached more than 1.0 kg N/m(3)/d within 20 days and up to 1.8 kg N/m(3)/d on day 39. Subsequently, high rate nitritation was stably attained during 100 days. However, nitrite accumulation had been observed for 140 days before attaining complete nitrification to nitrate. Fluorescence in situ hybridization analysis revealed the increase in amount of ammonia-oxidizing bacteria which existed in the outer edge of the granular sludge during the start-up period. This microbial ecological change would make it possible to attain high rate ammonia removal.  相似文献   

15.
The purpose of this study was to evaluate the influence of partial ozonation of return activated sludge on settling properties and dewaterability of sludge. Sequencing batch reactors with two sets of aerobic and alternating anoxic/aerobic conditions were used. In each set, one reactor served as a control and the other was subject to the ozone treatment (doses in the range of 0.016-0.080 mg O3/mg TSS of initial excess sludge). The level of total suspended solids (TSS) in each reactor was controlled at 1,800 mg/l. To evaluate settleability and dewaterability, settling kinetic studies, sludge volume index (SVI) and capillary suction time test (CST) were used. For extraction and quantifying sludge biopolymers, thermal-ethanolic extraction was employed. The ratio of bound-to-total extracellular polymer substances (EPS) was higher for the strictly aerobic reactor than for the alternating anoxic/aerobic one, indicating the stronger structure of the aerobic flocs. After ozone treatment, the fraction of bound EPS was released and solubilized, increasing soluble EPS. Increased apparent food-to-microorganism (F/M) ratio favoured production of EPS in ozonated reactors, enhancing flocculation, which had potential to improve settling. Dewaterability, measured by CST test, was better in alternating anoxic/aerobic reactors than in aerobic ones, indicating that incorporation of an anoxic zone for biological nutrient removal leads to improvement in sludge dewatering. The negative impact of ozonation on dewaterability was minimal in terms of the long-term operation.  相似文献   

16.
Recently, several groups have showed the occurrence of aerobic granular sludge. The excellent settling characteristics of aerobic granular sludge allow the design of very compact wastewater treatment plants. In laboratory experiments, high oxygen concentrations were needed to obtain stable granulation. However, in order to obtain energy efficient aeration and good denitrification low oxygen concentrations would be required. From earlier research on biofilm morphology, it was learned that slow growing organisms influence the density and stability of biofilms positively. To decrease the growth rate of the organisms in the aerobic granules, easily degradable substrate (e.g. acetate) has to be converted to slowly degradable COD like microbial storage polymers (e.g. PHA). Phosphate or glycogen accumulating bacteria perform this conversion step most efficiently. In this paper it is shown that the selection of such bacteria in aerobic granules indeed led to stable granular sludge, even at low oxygen concentrations.  相似文献   

17.
The biological wastewater treatment using aerobic granular sludge is a new and very promising method, which is predominantly used in SBR reactors which have higher volumetric conversion rates than methods with flocculent sludge. With suitable reactor operation, flocculent biomass will accumulate into globular aggregates, due to the creation of increased substrate gradients and high shearing power degrees. In the research project described in this paper dairy wastewater with a high particle load was treated with aerobic granular sludge in an SBR reactor. A dynamic mathematical model was developed describing COD and nitrogen removal as well as typical biofilm processes such as diffusion or substrate limitation in greater detail. The calibrated model was excellently able to reproduce the measuring data despite of strongly varying wastewater composition. In this paper scenario calculations with a calibrated biokinetic model were executed to evaluate the effect of different operation strategies for the granular SBR. Modeling results showed that the granules with an average diameter of 2.5 mm had an aerobic layer in between 65-95 microm. Density of the granules was 40 kgVSS/m3. Results revealed amongst others optimal operation conditions for nitrogen removal with oxygen concentrations below 5 gO2/m3. Lower oxygen concentrations led to thinner aerobic but thicker anoxic granular layers with higher nitrate removal efficiencies. Total SBR-cycle times should be in between 360-480 minutes. Reduction of the cycle time from 480 to 360 minutes with a 50% higher throughput resulted in an increase of peak nitrogen effluent concentrations by 40%. Considering biochemical processes the volumetric loading rate for dairy wastewater should be higher than 4.5 kgCOD/(m3*d). Higher COD input load with a COD-based volumetric loading rate of 9.0 kgCOD/(m3*d) nearly led to complete nitrogen removal. Under different operational conditions average nitrification rates up to 5 gNH/(m3*h) and denitrification rates up to 3.7 gNO/(m3*h) were achieved.  相似文献   

18.
Aerobic granular sludge has a number of advantages over conventional activated sludge flocs, such as cohesive and strong matrix, fast settling characteristic, high biomass retention and ability to withstand high organic loadings, all aspects leading towards a compact reactor system. Still there are very few studies on the strength of aerobic granules. A procedure that has been used previously for anaerobic granular sludge strength analysis was adapted and used in this study. A new coefficient was introduced, called a stability coefficient (S), to quantify the strength of the aerobic granules. Indicators were also developed based on the strength analysis results, in order to categorize aerobic granules into three levels of strength, i.e. very strong (very stable), strong (stable) and not strong (not stable). The results indicated that aerobic granules grown on acetate were stronger (high density: >150 g T SSL(-1) and low S value: 5%) than granules developed on sewage as influent. A lower value of S indicates a higher stability of the granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号