首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究双吸泵在小流量工况下叶轮内部空化特性,同时进一步说明小流量工况相比于设计工况时的空化特性差异,结合均质两相流模型和SST k-ω湍流模型,对双吸泵小流量工况和设计工况下的全流道空化流场进行数值模拟,以分析不同流量工况下空化分布与发展情况,以及空化对各叶片载荷造成的影响。研究结果表明:适当减小双吸泵进口流量,有助于改善双吸泵的空化性能;在小流量工况下空化首先发生于叶片吸力面头部靠后盖板附近,而且此处的空泡体积分数最大,这一空化特征同设计工况有所差异;随着NPSH的降低,叶轮内空化不断加强,但是小流量工况下的空化强度始终不及设计工况;不同空化状态会导致叶片吸力面压力的变化,从而表现为叶片表面载荷分布的变化。  相似文献   

2.
为了探索蜗壳式混流泵在小流量工况下的流动特性,基于RNG k-ε湍流模型对一台比转速为585的双蜗壳混流泵进行数值计算,并预测了其外特性,利用外特性试验验证了数值计算方法的可靠性,结果表明:小流量工况下叶轮进口处无法满足无撞击入流,流体质点不断冲叶片压力面前缘,导致该部位存在一个局部高速低压区域;0.6Qd工况下,叶轮进口截面位置产生明显的涡核,此时泵内部无法满足无预旋入流;设计工况下蜗壳截面上流线光滑平顺,随着流量不断减小至0.6Q_d工况,隔舌部位、蜗壳隔板进口处以及蜗壳出口部位产生3处明显的漩涡,同时这3个部位的湍动能明显高于其他部位;蜗壳隔板内侧的湍动能明显大于隔板外侧,蜗壳内部流线图中的漩涡均发生在隔板内测,从而说明隔板内侧流动的不稳定性较大。  相似文献   

3.
为深入了解旋流泵内部不稳定流动情况,基于RNG k-ε湍流模型,运用CFX软件对3种流量下的旋流泵进行非定常计算,分析了不同流体域的涡核、湍动能分布情况以及内部压力脉动特性。结果表明:随着流量的增加,进口管路涡核逐渐减少;无叶腔内圈首尾相连的圆形涡带直径和流速逐步变大,无叶腔外圈涡核逐步分散;无叶腔向扩散管过渡区域的涡核尺度显著增大,隔舌处的涡核尺度亦逐步增大。小流量和额定流量下,高亮湍动能集中于无叶腔内圈,内部压力脉动主频为叶频;大流量下,高亮湍动能集中于无叶腔向扩散管过渡区域,主频为轴频。叶轮中非涡核区多集中于叶片迎水面,随着流量的增加,涡核分布逐步分散,非核区域增多;高亮湍动能在小流量下分布在叶片入口,额定流量下分布在流道中部,大流量下分布在叶片出口;叶片流道内的压力脉动主频始终为轴频。  相似文献   

4.
叶轮内能量损失是影响离心泵水力性能的关键因素,为探明离心式叶轮内的能量损失特性,本文采用可直接求解大尺度湍流结构的超大涡模拟方法对某低比转速离心叶轮三种流量(分别为1.0,0.6和0.25倍设计流量)下的内部流动进行数值模拟,基于平均流动动能输运研究叶轮内的流动特征、能量损失特性及其机理。通过积分平均流动动能输运方程的直接黏性耗散项和湍动能生成项,分别计算直接黏性损失和湍动能生成对应的平均流动动能损失,建立流场特征与能量损失的关联,获得流场中能量损失的空间分布特征。结果表明,叶轮内直接黏性损失集中在近壁区,且随流量降低而显著减小;湍动能生成是平均流动动能损失的主要形式,其与叶轮内流动的剪切效应直接相关,在叶片压力面,脱流和分离涡形成强剪切流动,湍动能生成项周向-周向分量(Pθθ)和径向-周向分量(P)将增加周向和径向速度脉动而使湍动能增加,径向-径向分量(Prr)则减小速度脉动的径向分量,从而抑制平均流动动能转换为湍动能;对于叶片吸力面分离流动及叶轮出口回流所形成的强剪切流动,P和P  相似文献   

5.
为了研究不同出水口淹没深度的轴流泵性能及内部湍流特征,以1600 QZB-85轴流泵为研究对象,以CFX为平台,基于标准k-ε湍流模型,开展了0.8 n~1.2 n工况下的轴流泵出水口在不同淹没深度下的数值仿真研究.结果表明:叶轮转速一定,轴流泵的效率和扬程随着出水口淹没深度的增加呈现先增大后减小的特征;转轮区的湍动能损耗随着出水口淹没深度的增加,其湍动能损耗呈现小幅变化,呈现先减小后增大趋势,且湍动能损耗在叶轮区呈现非对称分布;在出水口淹没深度为5m时,轴流泵内部流场最好,偏离最佳淹没深度越多,内部流场越紊乱.出水口淹没深度相同,在额定叶轮转速的工况下,轴流泵的效率最高.上述研究结果对于深入研究转轮区压力与内部湍流特征、提高轴流泵泵站运行效率等具有一定的意义.  相似文献   

6.
为了进一步优化离心泵叶轮流道,提高离心泵的空化性能,对有/无分流叶片离心泵进行全流道三维非定常湍流空化数值模拟,分析0.4Q~1.0Q工况下泵的空化性能。结果显示:在空化充分发展的情况下,无分流叶片离心泵扬程对NPSH的降低比较敏感;添加分流叶片后,离心泵的扬程提高,叶轮进口部位的低压区域减少,叶轮内湍动能明显减小,泵的抗空化性能明显增强;随着流量的降低,泵的临界空化余量降低,但泵内发生严重空化的速率逐渐加快;当离心泵内发生严重空化时,空泡将堵塞整个叶轮流道。  相似文献   

7.
以HLA855A-LJ-250型号水轮机为研究对象,针对最大水头、最小水头和额定水头3种不同工况进行全流道三维非定常数值模拟,着重分析尾水管内部流场分布规律,提取尾水管入口到出口的完整流线,并建立相应的数学模型。结果表明:额定工况下尾水管内部湍流动能和湍流粘度分布稳定,变化梯度小,内部流动最稳定,建立的数学模型拟合效果最好;最大水头工况下尾水管内部流场受空腔涡带的影响严重,在直锥段湍流动能变化梯度大,湍流粘度数值较高,容易造成尾水管内部流动不稳定,该工况下质点坐标分布波动较大,建立的数学模型较复杂;最小水头工况下尾水管内部流场变化趋势接近额定工况,该工况下建立的数学模型有较好拟合度。采用的研究方法为分析水轮机内部流场提供了新思路,有一定的借鉴意义。  相似文献   

8.
自吸泵内能量损失及非定常流动特性研究   总被引:1,自引:0,他引:1  
舒欣  任芸  吴登昊  祝之兵  牟介刚 《水利学报》2019,50(8):1010-1020
自吸泵由于其特有的气液分离腔和回流孔结构使得其内部流动更为复杂,本文针对自吸泵内能量损失及非定常流动特性开展实验和数值研究。通过开展模型泵水力性能实验,发现数值计算结果与实验结果具有较好一致性。利用熵产理论和Q准则定量分析了不同工况下自吸泵内不同区域的能量损失特性及涡核分布特征,结果表明:泵内熵产分布特征与水力损失分布特征基本一致,叶轮、蜗壳和气液分离腔是自吸泵内能量损失的主要区域。蜗壳内部的压力脉动强度在靠近隔舌区域较大,蜗壳中段处变弱,蜗壳出口扩散段处又进一步增强。在小流量工况下,叶轮和蜗壳内部涡核分布面积较大,涡核主要分布在叶轮的进口处和出口处。  相似文献   

9.
基于雷诺时均方程和RNG k-ε湍流模型,应用SIMPLE算法,对混流泵内部流场进行非定常数值模拟,分析不同工况监测点上压力脉动的时域特性和频域特性。取定常计算的外特性与实验值对比,对比结果为不同工况的扬程偏差均小于5%,证明该数值模型能准确地描述泵内流场特征。结果表明:叶片进口处水流冲击产生的回流和漩涡是引起叶轮内压力脉动的主要动力源,叶轮与蜗壳间的动静相干作用是产生蜗壳内压力脉动的主要动力,并且在向下游传播过程中,压力脉动逐渐减弱,叶频占主导地位,在小流量工况运行时,主频有向叶轮转频迁移的趋势,大流量工况下最大压力脉动发生在转轮中间位置;叶轮内的压力脉动要远远高于蜗壳,这是引起机组振动和噪声的主要来源。  相似文献   

10.
高比转速离心泵流道宽大,包角的大小将直接影响其水力性能。基于N-S方程和RNG k-ε湍流模型,对5种不同的叶片包角模型在多种工况下分别进行了数值模拟计算分析,以对不同包角下的外特性变化趋势、叶轮内部的三维流线以及湍动能变化规律进行研究。研究结果表明:(1)随着叶片包角的增大,离心泵的最高效率点表现为先增加后减小,扬程随着流量的增大而下降,当包角增大到一定限值时,下降的幅度最为明显;(2)离心泵叶轮流线在相同的流量下,随着叶片包角的增大,流线愈发平顺光滑且越趋于叶片线型时,叶轮的总压随包角的增大而逐渐减小;(3)在设计工况下,低速区主要集中在叶轮进口的叶片工作面处,随着叶片包角的增大,湍动能逐渐减小;(4)当叶片包角在110°附近时,该泵的水力性能即达到最优。研究结果可为今后对高比转速离心泵的研究提供一定的参考。  相似文献   

11.
离心泵蜗壳内压力脉动特性数值分析   总被引:2,自引:1,他引:1  
为揭示离心泵蜗壳流道内的压力脉动变化规律,采用雷诺时均方法(RANS),对3种工况下的离心泵内部三维非定常湍流流场进行数值计算,分析同一蜗壳断面不同位置以及沿蜗壳周向不同点的压力脉动特性。结果表明:蜗壳流道内具有非常明显的压力脉动,在各种工况下压力脉动的主频均是叶片通过频率;同一蜗壳断面上的压力脉动从蜗壳底部到蜗壳背面先减小后增大,蜗壳底部监测点的高频脉动成分较多;沿蜗壳周向,随着圆周角的增大,压力脉动减弱,隔舌附近压力脉动幅度最大,且高频脉动成分明显增加。  相似文献   

12.
为分析大流量工况下轴流泵叶顶区空化流场特性,采用修正的空化模型和SST k-ω湍流模型以及结构化网格技术,对南水北调工程某一轴流泵模型叶顶区流场进行数值模拟,并分析其大流量工况下叶顶间隙内的轴向速度和湍动能分布特性,揭示了叶片不同弦长截面的空穴分布和压力场的关联性。采用高速摄影技术,对叶顶区不同空化数下的空化流场进行实验测量,并与数值计算结果进行对比分析。研究结果表明,叶轮叶顶区空化主要分布在叶顶间隙区、泄漏涡卷吸区和涡带区域。在大流量工况下叶顶区空泡分布起始于叶顶叶片弦长中间位置,随着叶顶翼型弦长系数的增加,由叶顶角涡引起的间隙空化从叶顶压力面拐角处发起,并覆盖叶顶间隙区;泄漏涡空化区随着泄漏涡的产生、增强和耗散,与之对应也具有空化初生、发展和溃灭的过程。在大流量空化严重工况下,流动分离诱导叶片压力面前缘约50%区域出现片状空化,叶片吸力面中后部也形成了片状附着空化,同时叶顶区刮起涡空泡、泄漏流空泡和叶顶泄漏涡空化涡带并存,严重堵塞了叶轮流道。  相似文献   

13.
叶莉 《人民长江》2017,48(3):91-96
为了研究螺旋形蜗壳内部流动规律以及不同隔舌安放角对离心泵内部流动特性的影响,基于ANSYSCFX14.5对5种不同隔舌安放角的离心泵模型进行了定常与非定常计算和数据分析,并对离心泵的水力特性进行了实验验证。分析结果表明,随着隔舌安放角的增大,离心泵的高效区明显加宽,但是设计工况附近的水力性能稍有下降,其中在大流量区域,隔舌安放角的作用比较明显;隔舌安放角的不同主要对非设计工况下离心泵内部流体流态影响较大,其中在小流量工况时,随着隔舌安放角的变小,叶轮各流道内的流体流态分布的对称性明显改善,在大流量工况下,随着蜗壳隔舌安放角的减小,蜗壳出口段垂直截面方向的速度梯度变大;隔舌安放角的不同对叶轮所受径向力的影响很小,不同隔舌安放角的离心泵所对应的径向力分布规律几乎一致。  相似文献   

14.
《人民黄河》2016,(9):99-102
为探究长短叶片混流式水轮机在不同导叶开度下运行时内部水流流动的特点,基于流场数值模拟的计算方法对长短叶片混流式水轮机进行了全流道三维非定常湍流计算。结果表明,在不同开度下,转轮与导叶交界面处压力脉动主频皆为转轮转频与叶片数的乘积,且在小流量工况下主频振幅最大。当水轮机在小流量工况下运行时,尾水管涡带呈螺旋形,且绕转轮转轴顺时针旋转,与转轮旋转方向相同;当水轮机在额定工况下运行时,尾水管无涡带产生;当水轮机在大流量工况下运行时,尾水管涡带呈细长的圆锥形。  相似文献   

15.
采用Navier-Stokes方程和RNG k-ε湍流模型,对不同流量工况下离心泵内部非定常流动进行了数值计算,计算得到的离心泵外特性与试验结果吻合较好。数值模拟结果表明,不同流量工况下叶轮内压力脉动具有明显的周期性变化,压力脉动强度随着流量的减小而增强,叶片压力面脉动强度更加剧烈,叶轮旋转频率始终占主导作用。由叶轮进口至出口,叶片压力面和吸力面压力脉动最大幅值均渐渐增大。相同监测点的压力脉动最大幅值在30%设计流量工况时最大,约为设计流量工况下3~4倍。随时间叶轮流道内存有旋涡的产生、发展、脱落的周期性变化过程,这是造成离心泵运行效率低、压力脉动副值增大、脉动波形紊乱的主因。  相似文献   

16.
基于CFX软件和RNG k-ε湍流模型,研究了不同流量和不同进口压力条件下泵内空化流动的特性。通过Rayleigh-Plesset方程均相流动空化模型分析了叶轮内的空泡数与叶轮扭矩随空化系数变化的关系,空化的初生、主要位置和流道的静压变化特性。结果表明:空泡体积随空化系数的减小而增大,空化初生在叶片前缘及附近流道。随着进口压力的减小,诱发空化的低压区主要集中于叶片与流道的中部且压力分布不均匀。各小流量工况下,扭矩变化随着空化系数的减小而减小,在空化系数较大时,不同工况下的扭矩均会有不规则波动且各曲线变化临界点会随着流量的增加逐渐向前移动,但总体变化趋势大致相同。本文研究的微型高速泵内空化流场的特性及空化对泵稳定运行性能的影响可供设计较高运行效率的微型高速离心泵参考。  相似文献   

17.
基于非定常雷诺时均(URANS)方法,采用曲率修正的SST k-ω湍流模型,对竖井贯流泵内部流场进行非定常计算,研究辐条控制技术对不同工况下竖井贯流泵水力性能以及水泵叶轮进口流场和压力脉动特性的影响。结果表明:在设计工况下,辐条控制技术对竖井贯流泵的水力性能和叶轮进口流场、压力脉动特性的影响不大;在马鞍区工况下,竖井贯流泵叶轮前进水流道的轴向速度降低,速度环量增大,并随着流量减小而产生大范围回旋流,造成进水流道堵塞,引起低频压力脉动幅值增大;辐条控制技术可有效抑制回旋流的强度,提高叶轮入流的均匀度,降低压力脉动幅值,有效改善竖井贯流泵马鞍区工况的水力性能。  相似文献   

18.
采用SSTk-ω湍流模型分析半高导叶叶高对离心泵水力性能与压力脉动强度的影响,研讨半 高导叶对其性能的影响规律。结果表明,小流量工况时,导叶叶高对离心泵水力性能影响较小,随着流 量增大,其影响越明显。随着流量增加,离心泵扬程与效率随着导叶叶高降低而增大,高效区变宽,并向 大流量偏移。各流量工况下,导叶叶高对叶轮做功影响较小,而对导叶与蜗壳内总压损失影响较大,随 着流量增加,导叶叶高降低明显减小导叶与蜗壳内总压损失。在各流量工况时,叶轮、导叶与蜗壳内压 力脉动强度随着导叶叶高降低而逐渐降低。  相似文献   

19.
借助CFD软件FINE,应用k-ε湍流模型,对离心泵内部全三维湍流流场做数值计算。计算结果表明:随着流量的增大,叶片表面压力梯度逐渐减小;在小流量工况时,水流冲击叶片进口工作面,大流量工况时,水流冲击叶片进口吸力面;流量大小与叶轮内的轴向漩涡的位置无关;与实验结果比较,表明在设计工况附近,数值模拟对离心泵内部的复杂三维流动的水力性能预测是准确的。  相似文献   

20.
湍流结构是湍流运动研究中最为基础的问题。为了解明渠湍流结构相互作用的动力演变关系,该文采用高频高分辨率粒子成像测速系统对充分发展的明渠湍流进行纵剖面二维流速矢量场进行测量,对发夹涡及发夹涡包结构与高低速流团的动力演变关系以及发夹涡结构内部的湍动能分布特性进行分析。结果表明:发夹涡及发夹涡包结构可以由高低速流团相互作用而产生;发夹涡涡核只位于高低速流团的交界区域。近壁区发夹涡结构的喷射(Q2)过程为产生湍动能的主要区域。而湍动能耗散主要集中在高低速流团的交界区域。明渠湍流近壁区为湍动能的主要产生与耗散的区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号