首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anaerobic digestion (AD) is the preferred option to stabilize sludge. However, the rate limiting step of solids hydrolysis makes it worth modifing the conventional mesophilic AD in order to increase the performance of the digester. The main strategies are to introduce a hydrolysis pre-treatment, or to modify the digestion temperature. Among the different pre-treatment alternatives, the thermal hydrolysis (TH) at 170 degrees C for 30 min, and the ultrasounds pre-treatment (US) at 30 kJ/kg TS were selected for the research, while for the non-conventional anaerobic digestion, the thermophilic (TAD) and the two-stage temperature phased AD (TPAD) were considered. Four pilot plants were operated, with the same configuration and size of anaerobic digester (200 L, continuously fed). The biogas results show a general increase compared to the conventional digestion, being the highest production per unit of digester for the process combining the thermal pre-treatment and AD (1.4 L biogas/L digester day compared to the value of 0.26 obtained in conventional digesters). The dewaterability of the digestate became enhanced for processes TH + AD and TPAD when compared with the conventional digestate, while it became worse for processes US + AD and TAD. In all the research lines, the viscosity in the digester was smaller compared to the conventional (which is a key factor for process performance and economics), and both thermal pre-treatment and thermophilic digestion (TAD and TPAD) assure a pathogen free digestate.  相似文献   

2.
Dublin's Ringsend WWTP was designed to serve a population of approximately 1.2 million p.e. with a sludge production of 37,000 dry tonnes per year after upgrading to full secondary treatment. Several technical solutions were put forward as part of a design, build, finance and operate (DBFO) competition, with the chosen solution being a proposal by Black and Veatch for a combination of sequencing batch reactor (SBR) technology and anaerobic digestion with Cambi thermal hydrolysis pre-treatment (THP). The THP plant was built by Cambi and handed over to B&V in 2002. The plant is now operated by Celtic Anglian Water. In September 2004 a test was carried out on the mass and energy balance of the plant following 2 years of operation and is detailed in this paper. The process enables digestion at very high dry solids feed and low hydraulic retention time. The plant was built with three digesters of 4250 m3 each and is fed with hydrolysed sludge at 11% DS. There are four no. 1 MW Jenbacher engines operating mainly on biogas. Each pair of engines is fitted with a waste heat boiler with a capacity of one tonne steam per hour. These boilers have sufficient capacity to provide 80% of the steam required for the THP, which in turn provides all the heat for the subsequent digestion in the form of hydrolysed feed. There are two main biogas boilers for top up steam and other uses of the biogas including thermal oxidation of concentrated odours.  相似文献   

3.
Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.  相似文献   

4.
A major limitation of anaerobic sludge digestion is the long hydraulic retention time (HRT) required for satisfactory stabilization which results in large digester size. This study explored a possibility of operating digesters at shortened HRTs by sonication pretreatment of secondary sludges. Four identical digesters designated D1, D2, D3 and D4 were fed with untreated and sludge sonicated at densities of 0.18 W/ml, 0.33 W/ml and 0.52 W/ml, respectively. All digesters were operated at three HRTs of 8-day, 4-day and 2-day. Comparing with the control digester (D1), total solids removal efficiencies improved by 12-19%, 17-36% and 20-39% in digesters D2, D3 and D4, respectively. The volatile solids removal was also increased by 11-21%, 17-33% and 19-36% in the respective digesters. The improved solids degradation corresponded with increase in biogas production by 1.4-2.5, 1.9-3.0 and 1.6-3.1 times, respectively. Increase in methane composition by 2-17% was also noted in all digesters fed with sonicated sludge. An analysis indicated that sonication pretreatment could enhance degradation of carbon, nitrogen and sulfur substances in the digestion. The study suggested that sonication of sludge is a possible pretreatment to shorten the digester operating HRT with improvement in solids degradation, biogas production and methane content. It can be deduced that to maintain a consistent solids loading at a desire performance, sludge digester with smaller size can be designed.  相似文献   

5.
The Metropolitan Water Reclamation District (MWRD) of Greater Chicago's Stickney Water Reclamation Plant (SWRP) anaerobically digests approximately 430 dry tons per day (dtpd) (390 dry metric tons per day) of solids and produces 3.4 million ft(3)/day (96 thousand m(3)/day) of biogas from the anaerobic digesters, making it one of the largest municipal digester gas complexes in the world. Installation of new treatment processes, as well as future increases in flows and loads to the plant, are expected to significantly increase production of biologically degradable sludge and biogas. This paper presents a comprehensive planning study that was completed to identify and evaluate alternatives for utilization of this biogas. The best, sustainable approach was identified, taking into consideration economics, social impacts, and environmental impacts. The model results indicate that the most economically favorable scenario involves installing a cogeneration facility to produce electricity on-site, and operating it in conjunction with the plant's existing boilers to satisfy the heating needs of the plant. This scenario also provides the greatest reduction in GHG offsets at the power plants.  相似文献   

6.
The biological kinetic processes for anaerobic digestion (AD) are integrated into a two phase subset of a three phase mixed weak acid/base chemistry kinetic model. The approach of characterising sewage sludge into carbohydrates, lipids and proteins, as is done in the International Water Association (IWA) AD model No 1 (ADM1), requires measurements that are not routinely available on sewage sludges. Instead, the sewage sludge is characterised with the COD, carbon, hydrogen, oxygen and nitrogen (CHON) composition and is formulated in mole units, based on conservation of C, N, O, H and COD. The model is calibrated and validated with data from laboratory mesophilic anaerobic digesters operating from 7 to 20 d sludge age and fed a sewage primary and humus sludge mixture. These digesters yielded COD mass balances between 107-109% and N mass balances between 91-99%, and hence the experimental data is accepted as reasonable. The sewage sludge COD is found to be 32-36% unbiodegradable (depending on the kinetic formulation selected for the hydrolysis process) and to have a C3.5H7O2N0.196 composition. For the selected hydrolysis kinetics of surface mediated reaction (Contois), with a single set of kinetic and stoichiometric constants, for all retention times good correlation is obtained between predicted and measured results for: (i) COD; (ii) free and saline ammonia (FSA); (iii) short chain fatty acids (SCFA); (iv) H2CO3 * alkalinity; (v) pH of the effluent stream; (vi) CO2; and (vii) CH4 gases in the gas stream. The measured composition of primary sludge from two local wastewater treatment plants ranged between C3.38H7O1.91 N0.21 and C3.91H7O2.04N0.16. The predicted composition based on mass balances is therefore within 5% of the average measured composition providing persuasive validation of the model.  相似文献   

7.
A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.  相似文献   

8.
Proof-of-concept has been demonstrated for a process that will utilize nutrients from sludge liquor, natural light, and CO2 from biogas to grow microalgae at wastewater treatment plants. This process will reduce the impact of returning side-streams to the head of the plant. The produced algae will be fed to anaerobic digesters for increased biogas production. Dewatering of anaerobically digested sludge in centrifuges produces reject water with extremely low transmittance of light. A pretreatment procedure was developed that improved light transmittance for reject water from the FREVAR, Norway, wastewater treatment plant from 0.1% T to 77% T (670 nm, 1 cm path). Chlorella sp. microalgae were found to be suitable for growth in this pre-treated reject water. Typical nitrogen removal was 80-90 g N/kg TSS of produced microalgae. The microalgae were successfully harvested by chemically assisted flocculation followed by straining through a 33 microm sieve cloth, achieving up to 99% recovery. Harvested algae were anaerobically co-digested with wastewater sludge. The specific methane gas production (mL CH4/g VS fed) for the algae varied from less than 65% to 90% of the specific methane gas production for the wastewater sludge, depending on digester temperature, retention time and pre-treatment of the algae biomass.  相似文献   

9.
Anaerobic digestion is the only energy-positive technology widely used in wastewater treatment. Full-scale data prove that the anaerobic digestion of sewage sludge can produce biogas that covers a substantial amount of the energy consumption of a wastewater treatment plant (WWTP). In this paper, we discuss possibilities for improving the digestion efficiency and biogas production from sewage sludge. Typical specific energy consumptions of municipal WWTPs per population equivalent are compared with the potential specific production of biogas to find the required/optimal digestion efficiency. Examples of technological measures to achieve such efficiency are presented. Our findings show that even a municipal WWTP with secondary biological treatment located in a moderate climate can come close to energy self-sufficiency. However, they also show that such self-sufficiency is dependent on: (i) the strict optimization of the total energy consumption of the plant, and (ii) an increase in the specific biogas production from sewage sludge to values around 600 L per kg of supplied volatile solids.  相似文献   

10.
Self-heating of anaerobic digesters using energy crops.   总被引:1,自引:0,他引:1  
With the increasing application of energy crops in agricultural biogas plants and increasing digester volumes, the phenomenon of self-heating in anaerobic digesters appeared in some cases. Until now this development was just known from aerobic systems. To obtain an idea of the thermodynamics inside an anaerobic digester, a detailed analysis of all heat fluxes in a full-scale agricultural biogas plant was carried out. Several experiments were realised to quantify the influences of different internal and external energy sources. To estimate the impact of self-heating in anaerobic systems, data of other full-scale agricultural biogas plants in Austria were collected. Alternatives to the cooling of the digesters are discussed based on individual experiences of several plants. A connection between carbohydrate-rich substrates, especially with high starch contents, and the self-heating could be shown. From the results it can be assumed that the anaerobic digestion of most energy crops is exothermic, which is in contrast to the current thermodynamic belief.  相似文献   

11.
A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy.  相似文献   

12.
To assess the impact on greenhouse gas emission, different process schemes for municipal sludge treatment were evaluated based on the data from pilot-scale experiments and review of annual operation reports. A modified anaerobic digestion process with partial ozonation of digested sludge to improve biological degradability and the conventional anaerobic digestion process were compared with respect to the energy demand in each process schemes. Options for beneficial use of biogas included (1) application of biogas for power production and (2) recovery as an alternative to natural gas utilization. The analysis indicated that the partial ozonation process with power production led to minimal greenhouse gas emission because the extra energy production from this scheme was expected to cover all of the energy demand for the plant operation. Moreover, the final amount of dewatered sludge cake was only 40% of that expected from the conventional process, this significantly minimizes the potential for greenhouse gas emission in the subsequent sludge incineration processes.  相似文献   

13.
Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of the process conditions, pretreatment of input sludge and increase of process temperature is frequently used. The thermophilic process brings a higher solids reduction and biogas production, a high resistance to foaming, no problems with odour, better pathogens destruction and an improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in a lysate centrifuge was proved to cause increase of biogas production in full-scale conditions. The rapid thermal conditioning of digested sludge is an acceptable method of particulate matter disintegration and solubilization.  相似文献   

14.
A novel anaerobic digestion process combined with partial ozonation on digested sludge was demonstrated for improving sludge digestion and biogas recovery by full-scale testing for 2 years and its performance was compared with a simultaneously operated conventional anaerobic digestion process. The novel process requires two essential modifications, which are ozonation for enhancing the biological degradability of sludge organics and concentrating of solids in the digester through a solid/liquid separation for extension of SRT. These modifications resulted in high VSS degradation efficiency of ca. 88%, as much as 1.3 times of methane production and more than 70% reduction in dewatered sludge cake production. Based on the performance, its energy demands and contribution for minimisation of greenhouse gas emission was evaluated throughout an entire study of sludge treatment and disposal schemes in a municipality for 130,000 p.e. The analysis indicated that the novel process with power generation from biogas would lead to minimal greenhouse gas emission because the extra energy production from the scheme was expected to cover all of the energy demand for the plant operation, and the remarkable reduction in dewatered sludge cake volumes makes it possible to reduce N2O discharge and consumption of fossil fuel in the subsequent sludge incineration processes.  相似文献   

15.
16.
The combination of equalisation tanks and anaerobic digesters represents a typical design scenario within the treatment of industrial wastewaters. In this context, if the hydraulic capacity of the equalisation tanks is effectively handled, significant improvements in the performance of anaerobic digesters can be achieved in terms of process stability and biogas production. This paper presents a rule-based control strategy for anaerobic reactors with the objective of maximising in the long-term the net production of biogas. The control algorithm combines real-time information about the state of the anaerobic digester with on-line measurements about the wastewater volume of the equalisation tank in order to set permanently the appropriate production of biogas. Such a strategy guarantees a continuous influent flow so that emptying and overflowing episodes in the equalisation tank can be prevented. Aiming at a further full-scale implementation, only reliable and cost-effective on-line instrumentation has been considered within the control architecture. The performance of the proposed control approach has been validated for an anaerobic hybrid configuration (AHR) by simulation using the IWA ADM1 model.  相似文献   

17.
This work elucidates the effects of pretreatment of secondary sludge by microwave irradiation on anaerobic digestion. The soluble chemical oxygen demand (COD) concentration increased up to 22% as microwave irradiation time increased, which indicated the sludge particles disintegrated. Three identical automated bioreactors with working volume of 5 l were used as anaerobic digesters at mesophilic temperature (35 degrees C). The reactors were separately fed with sludge with microwave pretreated- and control- sludge at different hydraulic retention times (HRT). The volatile solid (VS) reduction in the control operation was approximately 23.2 +/- 1.3%, while it was 25.7 +/- 0.8% for the reactors with the pretreated sludge. The average biogas production rate with the pretreated sludge at 8, 10, 12, and 15 days HRTs was 240 +/- 11, 183 +/- 9, 147 +/- 8, and 117 +/- 7 ml/l/d respectively, while those with the control sludge were 134 +/- 12 and 94 +/- 7 ml/l/d at 10 and 15 days HRTs. Maximum rates of COD removal and methane production with the pretreated sludge were 64% and 79% higher than those of the control system, respectively.  相似文献   

18.
A new process configuration combining anaerobic digestion with ozonation, and operated at long SRT, was studied with the objective of on-site reduction in sludge quantity and improving biogas recovery. The process performance with respect to solid reduction efficiency and other important process parameters like accumulation of inorganic solids, changes in sludge viscosity and dewatering characteristics were evaluated from the data of long term pilot scale continuous experiments conducted using a mixture of primary and secondary municipal sewage sludge. Due to sludge ozonation and long SRT, high VSS degradation efficiency of approximately 80% was achieved at a reactor solid concentration of 6.5%. A high fraction of inorganic solid (>50%) consisting mainly of acid insoluble and iron compounds was found to accumulate in the reactor. The high inorganic content accumulated in the digested sludge did not, however, contribute to the observed increase in sludge viscosity at high solid concentration. The sludge viscosity was largely found to depend on the organic solid concentration rather than the total solid content. Moreover, higher inorganic content in the digested sludge resulted in better sludge dewaterability. For a quick assessment of the economic feasibility of the new process, an economic index based on the unit cost of digested sludge disposal to unit electric cost is proposed.  相似文献   

19.
The treatment of H2S in the biogas produced during anaerobic digestion has to be carried out to ensure the efficient long-lasting use of its energetic potential. The microaerobic removal of H2S was studied to determine the treatment capacity at low and high H2S concentrations in the biogas (0.33 and 3.38% v/v) and to determine the optimal O2 rate that achieved a concentration of H2S of 150 mg/Nm3 or lower. Research was performed in pilot-plant scale digesters of sewage sludge, with 200 L of working volume, in mesophilic conditions with a hydraulic retention time of 20 d. O2 was supplied at different rates to the headspace of the digester to create the microaerobic conditions. The treatment successfully removed H2S from the biogas with efficacies of 97% for the low concentration and 99% for the highest, in both cases achieving a concentration below 150 mg/Nm3. An optimal O2 rate of 6.4 NLO2/Nm3 of biogas when treating the biogas was found with 0.33% (v/v) of H2S and 118 NLO2/ Nm3 of biogas for the 3.38% (v/v) concentration. This relation may be employed to control the H2S content in the biogas while optimising the O2 supply.  相似文献   

20.
This paper assesses the anaerobic digestion (AD) of the source-sorted organic fraction of municipal solid waste (SS-OFMSW). For this purpose, an experimental programme was implemented involving the operation and monitoring of two bench-scale anaerobic digesters, continuously fed with SS-OFMSW. The mathematical model (ADM1) was then applied to simulate the process of AD of SS-OFMSW. While start-up of the digesters was relatively slow, re-inoculation with cattle manure with effluent dilution reduced the acclimation period and achieved better stability, accommodating a feeding rate at an OLR = 2.39 kg TVS m(-3) day(-1). The high recorded methane gas production rate, reaching (0.1-2.5 m(3) CH(4)/m(3) reactor day), confirms the excellent biodegradability of the type of waste used (SS-OFMSW) and its suitability for AD. Satisfactory simulations of soluble chemical oxygen demand (COD), pH, and methane composition of biogas were obtained, whereas volatile fatty acid (VFA) concentrations in both reactors were over-predicted albeit capturing its general trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号