首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work elucidates the effects of pretreatment of secondary sludge by microwave irradiation on anaerobic digestion. The soluble chemical oxygen demand (COD) concentration increased up to 22% as microwave irradiation time increased, which indicated the sludge particles disintegrated. Three identical automated bioreactors with working volume of 5 l were used as anaerobic digesters at mesophilic temperature (35 degrees C). The reactors were separately fed with sludge with microwave pretreated- and control- sludge at different hydraulic retention times (HRT). The volatile solid (VS) reduction in the control operation was approximately 23.2 +/- 1.3%, while it was 25.7 +/- 0.8% for the reactors with the pretreated sludge. The average biogas production rate with the pretreated sludge at 8, 10, 12, and 15 days HRTs was 240 +/- 11, 183 +/- 9, 147 +/- 8, and 117 +/- 7 ml/l/d respectively, while those with the control sludge were 134 +/- 12 and 94 +/- 7 ml/l/d at 10 and 15 days HRTs. Maximum rates of COD removal and methane production with the pretreated sludge were 64% and 79% higher than those of the control system, respectively.  相似文献   

2.
A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.  相似文献   

3.
For improving sludge digestion and biogas recovery, a new anaerobic digestion process combined with ozonation was tested at a full-scale unit for 2 years and its performance was compared with a simultaneously operated conventional anaerobic digestion process. The new process requires two essential modifications, which includes ozonation for enhancing the biological degradability of sludge organics and concentrating of solids in the digester through a solid/liquid separation for extension of SRT. These modifications resulted in high VSS degradation efficiency of ca. 88%, as much as 1.3 times of methane production and more than 70% reduction in dewatered sludge cake production. Owing to accumulation of inorganic solids in the digested sludge, water content of the dewatered sludge cake also reduced from 80% to 68%. An energy analysis suggested that no supplemental fuel was necessary for the subsequent incineration of the cake from the new process scheme. The process is suitable to apply to a low-loaded anaerobic digestion tank, where power production is used.  相似文献   

4.
A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.  相似文献   

5.
The process of anaerobic thermophilic digestion of municipal wastewater sludge with a recycled part of thickened digested sludge, was studied in semi-continuous laboratory digesters. This modified recycling process resulted in increased solids retention time (SRT) with the same hydraulic retention time (HRT) as compared with traditional digestion without recycling. Increased SRT without increasing of HRT resulted in the enhancement of volatile substance reduction by up to 68% in the reactor with the recycling process compared with 34% in a control conventional reactor. Biogas production was intensified from 0.3 L/g of influent volatile solids (VS) in the control reactor up to 0.35 L/g VS. In addition, the recycling process improved the dewatering properties of digested sludge.  相似文献   

6.
A novel anaerobic digestion process combined with partial ozonation on digested sludge was demonstrated for improving sludge digestion and biogas recovery by full-scale testing for 2 years and its performance was compared with a simultaneously operated conventional anaerobic digestion process. The novel process requires two essential modifications, which are ozonation for enhancing the biological degradability of sludge organics and concentrating of solids in the digester through a solid/liquid separation for extension of SRT. These modifications resulted in high VSS degradation efficiency of ca. 88%, as much as 1.3 times of methane production and more than 70% reduction in dewatered sludge cake production. Based on the performance, its energy demands and contribution for minimisation of greenhouse gas emission was evaluated throughout an entire study of sludge treatment and disposal schemes in a municipality for 130,000 p.e. The analysis indicated that the novel process with power generation from biogas would lead to minimal greenhouse gas emission because the extra energy production from the scheme was expected to cover all of the energy demand for the plant operation, and the remarkable reduction in dewatered sludge cake volumes makes it possible to reduce N2O discharge and consumption of fossil fuel in the subsequent sludge incineration processes.  相似文献   

7.
Proof-of-concept has been demonstrated for a process that will utilize nutrients from sludge liquor, natural light, and CO2 from biogas to grow microalgae at wastewater treatment plants. This process will reduce the impact of returning side-streams to the head of the plant. The produced algae will be fed to anaerobic digesters for increased biogas production. Dewatering of anaerobically digested sludge in centrifuges produces reject water with extremely low transmittance of light. A pretreatment procedure was developed that improved light transmittance for reject water from the FREVAR, Norway, wastewater treatment plant from 0.1% T to 77% T (670 nm, 1 cm path). Chlorella sp. microalgae were found to be suitable for growth in this pre-treated reject water. Typical nitrogen removal was 80-90 g N/kg TSS of produced microalgae. The microalgae were successfully harvested by chemically assisted flocculation followed by straining through a 33 microm sieve cloth, achieving up to 99% recovery. Harvested algae were anaerobically co-digested with wastewater sludge. The specific methane gas production (mL CH4/g VS fed) for the algae varied from less than 65% to 90% of the specific methane gas production for the wastewater sludge, depending on digester temperature, retention time and pre-treatment of the algae biomass.  相似文献   

8.
Anaerobic digestion (AD) is the preferred option to stabilize sludge. However, the rate limiting step of solids hydrolysis makes it worth modifing the conventional mesophilic AD in order to increase the performance of the digester. The main strategies are to introduce a hydrolysis pre-treatment, or to modify the digestion temperature. Among the different pre-treatment alternatives, the thermal hydrolysis (TH) at 170 degrees C for 30 min, and the ultrasounds pre-treatment (US) at 30 kJ/kg TS were selected for the research, while for the non-conventional anaerobic digestion, the thermophilic (TAD) and the two-stage temperature phased AD (TPAD) were considered. Four pilot plants were operated, with the same configuration and size of anaerobic digester (200 L, continuously fed). The biogas results show a general increase compared to the conventional digestion, being the highest production per unit of digester for the process combining the thermal pre-treatment and AD (1.4 L biogas/L digester day compared to the value of 0.26 obtained in conventional digesters). The dewaterability of the digestate became enhanced for processes TH + AD and TPAD when compared with the conventional digestate, while it became worse for processes US + AD and TAD. In all the research lines, the viscosity in the digester was smaller compared to the conventional (which is a key factor for process performance and economics), and both thermal pre-treatment and thermophilic digestion (TAD and TPAD) assure a pathogen free digestate.  相似文献   

9.
The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.  相似文献   

10.
Experimental data obtained from the operation in a pilot plant are used to perform mass and energy balances to a global process combining units of thermal hydrolysis (TH) of secondary sludge, anaerobic digestion (AD) of hydrolysed secondary sludge together with fresh primary sludge, and cogeneration from biogas by using a gas engine in which the biogas produces electricity and heat from the exhaust gases. Three scenarios were compared, corresponding to the three digesters operated: C (conventional AD, 17 days residence time), B (combined TH + AD, same time), and A (TH + AD at half residence time). The biogas production of digesters B and A was 33 and 24% better, respectively when compared with C. In the case of the combined TH + AD process (scenarios A and B), the key factors in the energy balance were the recovery of heat from hot streams, and the concentration of sludge. The results of the balances showed that for 8% DS concentration of the secondary sludge tested in the pilot plant, the process can be energetically self-sufficient, but a fraction of the biogas must by-pass the gas engine to be directly burned. From an economic point of view, scenario B is more profitable in terms of green energy and higher waste removal, while scenario A reduces the digester volume required by a half. Considering a population of 100,000 inhabitants, the economic benefit is 87,600 €/yr for scenario A and 132,373 €/yr for B. This value can be increased to 223,867 €/yr by increasing the sludge concentration of the feeding to the TH unit to a minimum value that allows use of all the biogas to produce green energy. This concentration is 13% DS, which is still possible from a practical point of view. Additional benefits gained with the combined TH + AD process are the enhancement of the digesters rheology and the possibility of getting Class A biosolids. The integration study presented here set the basis for the scale-up to a demonstration plant.  相似文献   

11.
The effect of returning solids to the digester, after one of three thickening processes, on volatile solids reduction (VSR) and gas production was investigated. Three different thickening methods were compared: centrifugation, flotation and gravitational sedimentation. The amount and activity of retained biomass in thickened recycled sludge affected the efficiency of digestion. Semi-continuous laboratory digesters were used to study the influence of thickening processes on thermophilic sludge digestion efficiency. Centrifugation was the most effective method used and caused an increase of VSR from 43% (control) up to 70% and gas generation from 0.40 to 0.44 L g(-1) VS. Flotation and gravitational sedimentation ways of thickening appeared to be less effective if compared with centrifugation. These methods increased VSR only by up to 65 and 51%, respectively and showed no significant increase of gas production. The dewatering capacity of digested sludge, as measured by its specific resistance to filtration, was essentially better for the sludge digested in the reactors with centrifugated and settled recycle. The VS concentration of recycle (g L(-1)), as reflecting the amount of retained biomass, appeared to be one of the most important factors influencing the efficiency of sludge digestion in the recycling technology.  相似文献   

12.
The effect of alkaline pretreatment of waste-activated sludge, using two models to study the sequential hydrolysis rates of suspended (Sanders' surface model) and dissolved (Goel's saturation model) solids, on the mesophilic and thermophilic anaerobic digestion rate is evaluated. The pretreatment, which reduces the size of the solids, increases the reaction rate by increasing the surface area and the specific surface hydrolysis constant (K(SBK)); at thermophilic conditions from 0.45 x 10(-3) kg m(-2) d(-1) for the fresh sludge to 0.74 x 10(-3) kg m(-2) d(-1) for the pretreated sludge and at mesophilic conditions these values are 0.28 x 10(-3) kg m(-2) d(-1) and 0.47 x 10(-3) kg m(-2) d(-1) confirming the usefulness of a pretreatment for solids reduction. But for soluble solids, the thermoalkaline pretreatment decreases the reaction rates by inducing a competitive inhibition on the thermophilic anaerobic digestion rate while in the mesophilic range, a non-competitive inhibition is observed. A mathematical simulation of the consecutive reactions, suspended solids to dissolved solids and to methane in staged anaerobic thermophilic-mesophilic digestion, shows that with 4% suspended solids concentration it is better not to use a thermoalkaline pretreatment because overall solids reduction and total methane production are not as good as without pretreatment.  相似文献   

13.
In recent years, relevant interest has been devoted to activated sludge disintegration and solubilisation techniques in order to cope with the biological limitations related to particulate degradation. Mechanical disintegration with ultrasound can efficiently transform insoluble organics into a soluble form: the solubilised organic matter is released from the cells to the bulk phase, thus accelerating the hydrolysis step in the digestion process. Experiments were carried out on bench scale anaerobic reactors fed with either untreated or disintegrated excess sludge, added with a biomass inoculum taken from a full scale anaerobic digester. Digestion tests have been carried out at different feed/inoculum ratios (F/I) in the range of 0.1-2, kinetics of VS reduction has been investigated and a beneficial effect of sonication is observed for all the experimental conditions. Similar beneficial results have also been found for biogas production with a maximum gain of 25% at 0.5 F/I ratio.  相似文献   

14.
Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.  相似文献   

15.
A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy.  相似文献   

16.
In general, mesophilic anaerobic digestion of sewage sludge is more widely used compared to thermophilic digestion, mainly because of the lower energy requirements and higher stability of the process. However, the thermophilic anaerobic digestion process is usually characterised by accelerated biochemical reactions and higher growth rate of microorganisms resulting in an increased methanogenic potential at lower hydraulic retention times. Furthermore, thermal pre-treatment is suitable for the improvement of stabilization and could be realized at relatively low cost especially at low temperatures. The present study investigates the effect of the pre-treatment at 70 degrees C on thermophilic (55 degrees C) anaerobic digestion of primary and secondary sludge in continuously operated digesters. Thermal pre-treatment of primary and secondary sludge at 70 degrees C enhanced the removal of organic matter and the methane production during the subsequent anaerobic digestion step at 55 degrees C. It also greatly contributed to the destruction of pathogens present in primary sludge. Finally it results in enhanced microbial activities of the subsequent anaerobic step suggesting that the same efficiencies in organic matter removal and methane recovery could be obtained at lower HRTs.  相似文献   

17.
Results of three semi-continuous anaerobic tests were reported and discussed. Each test was carried out by two parallel anaerobic reactors fed with waste activated sludge, either as it was sampled from the sewage treatment plant of Rome North or previously disintegrated by ultra-sound treatment. Activated sludge was sonicated at the energy input of 5,000 or 2,500 kJ kg(-1) dry solids corresponding to a disintegration degree of approximately 8 or 4%, respectively. Sonication proved to be effective both in increasing VS destruction and cumulative biogas production. The best increase of VS destruction (from 30 to 35%) was achieved in test #3 carried out at high organic load (10 d residence time) and low energy input (2,500 kJ kg(-1) dry solids). The best increase in cumulative biogas production (from 472 to 640 NL after 67 d of tests i.e.) was obtained in test #1 at low organic load (20 d residence time) and high energy input (5,000 kJ kg(-1) dry solids). Specific biogas production varied in the tests carried out with untreated sludge (0.55 - 0.67 Nm3 kg(-1) VS destroyed) but was practically unchanged for all the tests with sonicated sludge (0.7 Nm3 kg(-1) VS destroyed).  相似文献   

18.
Winery and distillery wastewater treatment by anaerobic digestion.   总被引:1,自引:0,他引:1  
Anaerobic digestion is widely used for wastewater treatment, especially in the food industries. Generally after the anaerobic treatment there is an aerobic post-treatment in order to return the treated water to nature. Several technologies are applied for winery wastewater treatment. They are using free cells or flocs (anaerobic contact digesters, anaerobic sequencing batch reactors and anaerobic lagoons), anaerobic granules (Upflow Anaerobic Sludge Blanket--UASB), or biofilms on fixed support (anaerobic filter) or on mobile support as with the fluidised bed. Some technologies include two strategies, e.g. a sludge bed with anaerobic filter as in the hybrid digester. With winery wastewaters (as for vinasses from distilleries) the removal yield for anaerobic digestion is very high, up to 90-95% COD removal. The organic loads are between 5 and 15 kgCOD/m3 of digester/day. The biogas production is between 400 and 600 L per kg COD removed with 60 to 70% methane content. For anaerobic and aerobic post-treatment of vinasses in the Cognac region, REVICO company has 99.7% COD removal and the cost is 0.52 Euro/m3 of vinasses.  相似文献   

19.
The microbial processes involved in two-phase anaerobic digestion were investigated by operating a laboratory-scale acid-phase (AP) reactor and analyzing two full-scale, two-phase anaerobic digesters operated under mesophilic (35 °C) conditions. The digesters received a blend of primary sludge and waste activated sludge (WAS). Methane levels of 20% in the laboratory-scale reactor indicated the presence of methanogenic activity in the AP. A phylogenetic analysis of an archaeal 16S rRNA gene clone library of one of the full-scale AP digesters showed that 82% and 5% of the clones were affiliated with the orders Methanobacteriales and Methanosarcinales, respectively. These results indicate that substantial levels of aceticlastic methanogens (order Methanosarcinales) were not maintained at the low solids retention times and acidic conditions (pH 5.2-5.5) of the AP, and that methanogenesis was carried out by hydrogen-utilizing methanogens of the order Methanobacteriales. Approximately 43, 31, and 9% of the archaeal clones from the methanogenic phase (MP) digester were affiliated with the orders Methanosarcinales, Methanomicrobiales, and Methanobacteriales, respectively. A phylogenetic analysis of a bacterial 16S rRNA gene clone library suggested the presence of acetate-oxidizing bacteria (close relatives of Thermacetogenium phaeum, 'Syntrophaceticus schinkii,' and Clostridium ultunense). The high abundance of hydrogen consuming methanogens and the presence of known acetate-oxidizing bacteria suggest that acetate utilization by acetate oxidizing bacteria in syntrophic interaction with hydrogen-utilizing methanogens was an important pathway in the second-stage of the two-phase digestion, which was operated at high ammonium-N concentrations (1.0 and 1.4 g/L). A modified version of the IWA Anaerobic Digestion Model No. 1 (ADM1) with extensions for syntrophic acetate oxidation and weak-acid inhibition adequately described the dynamic profiles of volatile acid production/degradation and methane generation observed in the laboratory-scale AP reactor. The model was validated with historical data from the full-scale digesters.  相似文献   

20.
Co-digestion of waste activated sludge (WAS) with agro-industrial organic wastewaters is a technology that is increasingly being applied in order to produce increased gas yield from the biomass. In this study, the effect of olive mill wastewater (OMW) on the performance of a cascade of two anaerobic continuous stirred tank (CSTR) reactors treating thickened WAS at mesophilic conditions was investigated. The objectives of this work were (a) to evaluate the use of OMW as a co-substrate to improve biogas production, (b) to determine the optimum hydraulic retention time that provides an optimised biodegradation rate or methane production, and (c) to study the system stability after OMW addition in sewage sludge. The biogas production rate at steady state conditions reached 0.73, 0.63, 0.56 and 0.46 l(biogas)/l(reactor)/d for hydraulic retention times (HRTs) of 12.3, 14, 16.4 and 19.7 d. The average removal of soluble chemical oxygen demand (sCOD) ranged between 64 and 72% for organic loading rates between 0.49 and 0.75 g sCOD/l/d. Reduction in the volatile suspended solids ranged between 27 and 30%. In terms of biogas selectivity, values of 0.6 l(biogas)/g tCOD removed and 1.1 l(biogas)/g TVS removed were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号