首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
研究了氧化钙改性粉煤灰对水中Cr (Ⅵ)的吸附效果,结果表明:氧化钙改性粉煤灰吸附含Cr(Ⅵ)废水中的Cr(Ⅵ)符合Freundlich吸附等温模型,为自发的熵减吸附;其吸附行为符合拟二级动力学方程,吸附过程的活化能为-18.609 kJ/mol ,以物理吸附为主;通过T homas模型模拟了粉煤灰柱吸附行为,计算得到粉煤灰理论吸附容量为0.4367 m g/g。  相似文献   

2.
特定污泥对铬(Ⅵ)的吸附容量研究   总被引:6,自引:2,他引:4       下载免费PDF全文
接种了高效菌种A、B的驯化污泥在前期的生物滤床系统中体现了良好的铬(Ⅵ)去除效率,为了解决系统放大后污泥再生与使用周期等问题,对污泥的铬(Ⅵ)吸附容量进行了测定,测定项目包括一次连续吸附总量、营养添加前后吸附容量的变化等。以铬(Ⅵ)质量浓度为100mg/L的废水进行实验,得到该污泥吸附最佳时间为40min,此时污泥对铬的吸附能力为污泥自身干重的14 94%。一次连续吸附总量为27~28mg/g干污泥。营养液的加入使得污泥吸附能力提高了29 68%。  相似文献   

3.
研究了通过乙醇萃取处理脱硫废水中活性炭再生方法的可行性。通过试验得出:新活性炭与再生后对苯酚的吸附容量分别为14.09mg/g和1.07mg/g,再生效率为7.6%;而其再生前后对脱硫废液的吸附容量分别为540mg/g和200mg/g,再生效率为37%。通过经济评价估算,活性炭按3 000元/t计,再生一次较经济,可节约成本1 200元,乙醇萃取再生活性炭的方法可行。  相似文献   

4.
以单宁酸和腐殖酸吸附值作为活性炭吸附性能新指标进行生产性试验的验证,在建立生物活性炭吸附作用模型的基础上,对工艺运行60 d内活性炭的有机物吸附值(UV254和CODMn)进行了曲线拟合,结果较好地符合吸附模型,相关系数R2为0.606 4~0.786 1。对工艺中选取的5种活性炭进行有机物吸附试验,将吸附容量与传统选炭指标碘吸附值和亚甲基蓝吸附值,以及新指标单宁酸和腐殖酸吸附值进行相关性分析。结果表明传统指标与5种活性炭生产试验中的吸附容量之间不存在明显的相关性,而新指标与5种活性炭的吸附容量之间有较好的相关性:以UV254的变化值表示活性炭的吸附容量时,单宁酸及腐殖酸吸附值与其的相关系数R2分别为0.705 4和0.816 9;以CODMn的变化值表示活性炭的吸附容量时,单宁酸及腐殖酸吸附值与其的相关系数R2分别为0.632 5和0.701 3。  相似文献   

5.
以赤玉土为骨料烧制陶土材料,经FeCl3溶液浸渍及热处理改性后制备成新型的改性陶土颗粒吸附剂,对其表面特征及除砷性能进行初步研究:BET测定得出该吸附剂比表面积为36.493m2/g,孔容量为0.070mL/g;SEM EDX显示吸附剂表面有大量铁、氧元素分布;对比该吸附剂和HCl溶液改性吸附剂表面的微观数码照片及3D影像图,表明该吸附剂表面存在大量铁氧化物;该吸附剂在中性pH范围内有良好吸附除砷能力,共存的氟离子、磷酸根离子对除砷效果有不同程度的竞争影响,碳酸根离子对除砷效果无显著影响;Freundlich等温线方程能较好地拟合As(V)的吸附过程(R2=0.9927),吸附平衡时的饱和吸附容量可达43.491mg/g。低成本高效的改性陶土颗粒应用于实际的砷吸附处理,具有较好的应用前景。  相似文献   

6.
利用原土、羟基铁膨润土和羟基铁铝柱撑膨润土,进行了吸附有机锡废水中CODcr的试验.研究了膨润土投加量、吸附pH、时间和等温线的变化规律.结果表明,达到吸附平衡的时间为2 h;随着吸附pH由小到大的变化,CODCr的吸附去除率在一定范围内波动;膨润土的投加量宜大于4 g/L;吸附符合Henry等温式;膨润土的层间距、吸附位的数量及活性是决定对吸附性能的关键因素;吸附容量的大小和吸附作用的强弱顺序为:羟基铁铝膨润土>羟基铁膨润土>原土.  相似文献   

7.
人工湿地是净化含砷水体的重要途径之一,而填料是决定人工湿地除砷效果的关键因素。通过填料如砾石、锰砂、沸石和陶粒的理化性质的测定,以及各种填料的吸附动力学、吸附等温线和吸附影响因素试验,研究了填料的除砷性能及影响因素。结果表明:4种填料均能在24 h内达到吸附平衡,一级动力学方程和二级动力学方程能很好地拟合其吸附过程;锰砂、陶粒、沸石和砾石最大吸附容量依次为36.62,25.39,11.96,7.04 mg/kg,Freundlich方程能较好地拟合填料的等温吸附过程;在0.25~0.50 mm范围内,粒径对锰砂和陶粒吸附砷影响不显著;溶液中氨氮浓度在0.50~2.50 mg/L范围内几乎不影响填料对砷的吸附;当砷初始浓度低于0.4 mg/L时,磷酸盐在0.25~0.50 mg/L范围内对填料吸附砷的影响不显著;砷初始浓度高于0.4 mg/L时,随着磷酸盐浓度从0.25 mg/L增加至0.50 mg/L时,陶粒对砷的最大吸附量降低了2.57 mg/kg,对锰砂的吸附量降低了1.85 mg/kg。  相似文献   

8.
粉末状骨炭用于饮用水除氟的试验研究   总被引:2,自引:0,他引:2  
王鼎 《水资源保护》2008,24(1):63-64
对粉末状骨炭的除氟性能进行了多组试验研究,结果表明:粉末状骨炭的吸附容量与原水中氟离子的浓度呈线性关系,吸附等温式符合Freundlich公式。骨炭吸附容量受骨炭粒径、pH值、水温及水中其他离子的影响,骨炭粒径还会影响吸附反应的速度。骨炭采用5%的NaOH溶液再生,再生效果良好。  相似文献   

9.
采用等温吸附和吸附动力学实验,研究了三种人工湿地填料页岩、陶粒和砾石对磷的吸附特性。结果表明:Freundlich和Langmuir模型均能较好地拟合各填料对磷的吸附特征,各填料对磷的理论饱和吸附量大小依次为页岩(527.992 mg/kg)>陶粒(328.165 mg/kg)>砾石(129.729 mg/kg);各填料对磷的吸附过程分为快、中、慢3个阶段,三种填料对磷的吸附速率依次为页岩>陶粒>砾石;准二级动力学方程、双常数方程和Elovich方程均能较好地描述人工湿地填料对磷的吸附动力学特征,但从相关系数来看,准二级动力学方程的描述更为准确。  相似文献   

10.
针对不同尺度下地形指数以及蓄水容量的差异问题,以流域栅格地形为依托,提出了蓄水容量的一种尺度校正方法。以地形指数作为辅助因子,通过引入分辨率因子和分形理论分别对决定地形指数的上游集水面积和坡度两个变量进行尺度校正,并根据地形指数与蓄水容量之间的关联关系,计算地形指数校正后的不同尺度蓄水容量。实例验证结果表明,校正后的尺度蓄水容量均趋近于目标尺度蓄水容量,蓄水容量面积分布曲线逼近目标曲线;在仅考虑地形因素下,所提出的校正方法不仅能够有效降低尺度对地形指数和蓄水容量计算的影响,而且能够大幅减小计算工作量,提高计算效率。  相似文献   

11.
采用废弃花生壳对质量浓度为20 mg/L的Cr(Ⅵ)模拟水样进行动态吸附实验研究。结果表明:在室温条件下,用粒径为1.6~2.5 mm花生壳作吸附剂,用量为5.0 g,介质pH值为1.0,流量为3 mL/min,吸附后水样中Cr(Ⅵ)的去除率可以达到99.08%,Cr(Ⅵ)质量浓度为0.184 mg/L,满足GB 8978—1996《污水综合排放标准》的标准。对模型的拟合结果表明,Thomas模型能较好地反映吸附过程特征,花生壳饱和吸附容量为9.4 mg/g。从动态吸附穿透曲线中可见,219 min时达到吸附穿透点,1312 min时达到吸附衰竭点。  相似文献   

12.
沸石吸附水体中氨氮的热力学和动力学过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
随着近年来各大自然水体富营养化程度的加重,废水中氨氮的处理显得尤为重要。我国浙江缙云有丰富的沸石矿藏,研究其对于沸石的吸附过程有着明显的应用价值。实验结果显示:在288~318 K范围内的温度对沸石吸附氨氮过程影响较小,在氨氮初始浓度为30 mg/L的条件下,小粒径沸石对氨氮的48 h吸附容量为1.13±0.06 mg/g,去除率为91%。大粒径沸石对氨氮的48 h吸附容量为1.10±0.06 mg/g,去除率为87%。沸石对氨氮的吸附过程遵循二级吸附动力学方程,Freundlich和Langmuir等温吸附方程均适用于描述沸石吸附氨氮的热力学过程。本研究表明天然沸石是一种合适的吸附剂,可用于废水或者天然水体中氨氮的去除。  相似文献   

13.
利用三种类型活性炭(粉末炭PAC、活性炭纤维ACF、颗粒活性炭GAC),对三种典型含氮有机物(色氨酸、腺嘌呤和三聚氰胺)的吸附容量和吸附速率开展了研究。研究表明:PAC与ACF对色氨酸具有较高的吸附容量,吸附等温线符合Langmuir模型,拟二级动力学模型能够很好反应吸附速率变化;GAC吸附色氨酸等温线符合BET模型,其吸附速率变化符合内扩散模型。ACF与GAC对腺嘌呤均具有较高的吸附容量,其吸附等温线符合Freundlich模型,拟二级动力学能较好地反应了吸附速率的变化;而PAC对腺嘌呤的吸附更符合Langmuir模型,吸附速率变化同样符合拟二级模型。三种活性炭对三聚氰胺的吸附均大致符合BET模型,在低于液相饱和浓度条件下,三种炭的三聚氰胺吸附容量均较小,三种炭吸附三聚氰胺速率的变化都符合拟二级动力学模型。  相似文献   

14.
介绍活性炭吸附工艺设计的基本步骤和方法,说明如何建立高效低耗的活性炭水处理工艺,并通过吸附容量实验与连续流穿透实验获得工艺设计的基本参数。以吸附性能指标选炭法、微型快速穿透实验及生物活性炭系统的案例,论述活性炭塔中生物活性炭现象、活性炭催化/降解功能以及再生炭应用等高效低耗的功效,以达到进一步降低活性炭水处理成本的目的。  相似文献   

15.
随着工农业生产的迅速发展,大量工业废水中的金属离子通过各种渠道进入了地下水系统,给地下水水资源的开发、利用带来了极大威胁。为了探讨黏土矿物对工业废水中金属离子的吸附规律,在平煤集团 30 万 t PVC 配套 25 万 t 离子膜烧碱项目的研究基础上,通过室内静态吸附试验,对黏土矿物吸附氯碱工业污染物的吸附能力进行了研究。结果表明:黏土矿物对 Na+ 和 Hg2+ 有很好的吸附作用, pH 值是影响其吸附效果的一个重要因素;随着介质的 pH 值增高,阳离子交换容量增加。该结果为干旱半干旱区合理利用污水资源,充分发挥黏土矿物在环境治理上的应用潜力,寻求可持续发展的新型环保材料提供了依据。  相似文献   

16.
通过改变粉末活性炭的投加量、混凝搅拌时间、污染物的浓度测试粉末活性炭对目标污染物(乐果)的吸附性能.试验结果表明,活性炭在水中的接触时间与其吸附效果存在着明显的相关性,接触时间越长,活性炭吸附目标污染物(乐果)的量越大,而且活性炭的吸附作用在60~120 min内基本达到平衡,在最大投炭量条件下,活性炭所能应对的最大污染物浓度为标准限值的25倍.  相似文献   

17.
为提高生物滞留系统净化效果,探讨了绿沸石、蛭石、活性炭、珍珠岩等材料用作特殊填料时对道路径流雨水中NH_4~+-N、TN、TP、COD等污染物的吸附性能。静态摇床实验研究了填料对各污染物的吸附能力,并建立了各填料等温吸附模型。结果表明沸石的综合吸附性能较好,活性炭次之,4种填料的等温吸附过程拟合结果基本符合朗格缪尔(Langmuir)吸附模型。以沸石作为特殊填料的小试结果表明,生物滞留系统对NH_4~+-N、TN、TP、COD的负荷削减率可分别达到70.59%、85.83%、79.98%、66.02%。从净化性能及经济性方面考虑,沸石作为生物滞留系统特殊填料是一种较好的选择。  相似文献   

18.
GAC对水中内分泌干扰物双酚A的吸附特性及动力学研究   总被引:3,自引:0,他引:3  
研究了颗粒活性炭(GAC)对水中内分泌干扰物双酚A(BPA)的吸附容量、吸附动力学及其影响因素.结果表明,GAC吸附容量大,吸附等温线符合Langmuir和Freundlich模型;吸附容量受GAC粒径的变化影响较大.Langmuir模型的最大吸附容量qm与粒径dp关系为:ln(qm)=-0.507 5×ln(dp) 14.07;Freundlich模型Kf与dp关系为:ln(kf)=-1.078 ln(dp) 18.307.GAC对BPA为单分子层吸附,400 min基本可达到平衡,且吸附速率变化符合拟二级动力学模型,dp与速率常数k2之间符合ln(k2)=-1.039 ln(dp)-9.014;BPA初始浓度C0与k2关系式为1/k2=529.7 C0-35 979.  相似文献   

19.
本文研究了活性氧化铝的预处理措施及机理,并通过静态和动态吸附试验研究了经不同预处理后活性氧化铝的吸附性能。结果表明,硫酸铝溶液浸泡可显著改善活性氧化铝的吸附性能,即:活性氧化铝经2%硫酸铝溶液浸泡后,用于氟含量为3.7 mg/L的高氟水处理,其初始出水氟浓度降低至1.0 mg/L以下,穿透吸附容量1.532 mg/g,穿透BV值可达342。  相似文献   

20.
饮用水处理工艺去除两种典型内分泌干扰物的性能   总被引:4,自引:0,他引:4  
研究了水中两种典型内分泌干扰物———双酚A(BPA)和邻苯二甲酸二甲酯(DMP)在饮用水常规处理、臭氧活性炭和微曝气活性炭深度处理中试工艺中的去除性能。研究发现,饮用水常规处理工艺对BPA和DMP的去除效果有限,进水浓度为200~300μg/L条件下经过混凝、沉淀和砂滤后,BPA和DMP的去除率分别仅为25.38%和13.29%。臭氧活性炭深度处理工艺能有效去除BPA和DMP,但二者在该工艺中的去除特性有所不同:水中BPA经过臭氧氧化后几乎被全部去除,后续的生物活性炭处理单元作用较小;但臭氧氧化仅可部分去除DMP,大部分靠后续生物活性炭柱去除。微曝气活性炭深度处理工艺也能有效去除BPA和DMP,对二者的去除主要靠微曝气活性炭柱的作用,其效果略优于臭氧投加量为0条件下的臭氧活性炭柱,这说明微曝气活性炭柱存在较多的特定降解菌。通过静态吸附试验发现,臭氧活性炭柱和微曝气活性炭柱内活性炭对BPA和DMP的最大吸附容量均远小于新炭,同时臭氧活性炭柱内活性炭吸附容量略高于微曝气活性炭柱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号